Table of Contents

1. Introduction ... 1
 1.1 Overview of Communication Systems 1
 1.2 Spread-Spectrum Communications 2
 1.2.1 Direct-Sequence Spread-Spectrum Technique 3
 1.2.2 Frequency-Hopping Spread-Spectrum Technique 4
 1.3 Advantages of Spread-Spectrum Systems 6
 1.3.1 Mitigation of Multipath Effects 6
 1.3.2 Averaging of Signal Quality in Multiple-User Environ-
 ments .. 7
 1.3.3 Reduction of Frequency Planning Effort 7
 1.3.4 Increase in System Capacity 9
 1.4 Applications of Spread-Spectrum Communications 9
 1.5 Chaos-Based Communications 10
 1.5.1 Chaos ... 10
 1.5.2 Application of Chaos to Communications 11
 1.6 Benefits and Challenges ... 15
 1.7 What Is This Book About? 16

2. Chaos-Based Digital Modulation and Demodulation Techniques .. 17
 2.1 From Conventional to Chaos-Based Digital Communications . 17
 2.2 Classifications of Chaos-Based Communication Systems 18
 2.3 Chaos Shift Keying .. 20
 2.3.1 Coherent Demodulation Based on Correlation 21
 2.3.2 Non-Coherent Demodulation Based on Bit Energy Cal-
 culation .. 22
 2.4 Differential Chaos Shift Keying 25
 2.5 Other Modulation Schemes ... 30
 2.5.1 Chaotic On-Off-Keying 30
 2.5.2 Frequency-Modulated DCSK 30
 2.5.3 Correlation Delay Shift Keying 32
 2.5.4 Symmetric Chaos Shift Keying 32
 2.5.5 Quadrature Chaos Shift Keying 34
 2.6 Discrete-Time Baseband Equivalent Models 35
Table of Contents

2.6.1 Bandpass System ... 35
2.6.2 Lowpass Equivalent Model .. 36
2.6.3 Discrete-Time Lowpass Equivalent Model 37
2.6.4 Derivation of Average Bit-Energy-to-Noise-Power-Spectral-Density Ratio ... 38

3. Performance Analysis Methods for Coherent Chaos-Shift-Keying Systems ... 41
3.1 Review of the Chaos-Shift-Keying (CSK) System 42
3.2 Analysis of the CSK System with Multiple Access 44
3.2.1 Transmitter Structure .. 44
3.2.2 Receiver Structure .. 44
3.2.3 Derivation of Bit Error Rate 46
3.3 Simulations and Evaluation .. 51
3.3.1 Users Using Distinct Chaotic Maps 53
3.3.2 Same Chaotic Map Used by All Users 53
Appendix 3A: Derivation of variances relevant to the analysis of multiple access CSK system 58
Appendix 3B: Derivation of the statistical properties for the chaotic sequences generated by the logistic map and the cubic map 60

4.1 Review of the Differential Chaos-Shift-Keying (DCSK) System 63
4.2 Multiple Access DCSK System ... 65
4.3 Time-Delay-Based Multiple Access DCSK System 67
4.3.1 Frame Structure of the Transmitted Signal 67
4.3.2 Receiver Structure .. 70
4.3.3 Derivation of Bit Error Rate 71
4.3.4 Simulations and Evaluation 78
4.4 Permutation-Based Multiple Access DCSK System 84
4.4.1 System Description ... 84
4.4.2 Derivation of Bit Error Rate 87
4.4.3 Simulations and Evaluation 91
Appendix 4: Derivation of variances and covariances relevant to the analysis of time-delay-based multiple access DCSK system 94

5.1 Systems Subject to Narrowband Sine-Wave Jammers 97
5.2 Analysis of Anti-jamming Performance 99
5.2.1 Coherent CSK System .. 99
5.2.2 Non-Coherent DCSK System 106
5.3 Simulations and Evaluation ... 112

6.1 Systems Subject to Wideband Pulse-Noise Jammers 119
6.2 Analysis of Performance Under Pulsed-Noise Jammer 120
 6.2.1 Slowly Switching Jammer .. 122
 6.2.2 Fast Switching Jammer ... 128
6.3 Simulations and Evaluation .. 131
 6.3.1 Slowly Switching Jammer ... 131
 6.3.2 Fast Switching Jammer ... 132
Appendix 6A: Derivation of covariances .. 143
Appendix 6B: Derivation of variances ... 144
Appendix 6C: Derivation of the statistical properties for the chaotic sequences generated by Chebyshev maps of degree larger than one .. 145

7. Coexistence of Chaos-Based and Conventional Narrowband Digital Communication Systems .. 149

7.1 Overview of the Problem .. 149
7.2 System Description .. 150
7.3 Performance Analysis of Combined CSK-BPSK System 151
 7.3.1 Performance of the CSK System in Combined CSK-BPSK System 152
 7.3.2 Performance of the BPSK System in Combined CSK-BPSK System 158
7.4 Performance Analysis of Combined DCSK-BPSK System 161
 7.4.1 Performance of the DCSK System in Combined DCSK-BPSK System 161
 7.4.2 Performance of the BPSK System in Combined DCSK-BPSK System 167
7.5 Simulations and Evaluation .. 170
Appendix 7A: Derivation of covariances and variances relevant to the analysis of combined CSK-BPSK system .. 178
Appendix 7B: Derivation of $E[x_kx_m^2]$ for chaotic sequences generated by the logistic map .. 181

8. Coexistence of Chaos-Based and Conventional Spread-Spectrum Systems .. 183

8.1 System Overview .. 183
8.2 Analysis of Bit Error Performance .. 184
 8.2.1 Coherent CSK System ... 184
 8.2.2 Non-Coherent DCSK System .. 190
8.3 Simulations and Evaluation .. 194
Appendix 8: Derivation of covariances and variances relevant to the analysis of CSK system .. 200
Chaos-Based Digital Communication Systems
Operating Principles, Analysis Methods, and
Performance Evaluation
Lau, F.C.M.; Tse, C.K.
2003, XII, 228 p. 70 illus., Hardcover
ISBN: 978-3-540-00602-2