Contents

Preface .. V

Part I The curve smoothing problem

1 Curve evolution and image processing 3
 1.1 Shape recognition .. 5
 1.1.1 Axioms for shape recognition.......................... 7
 1.1.2 ... and their consequences 8
 1.2 Curve smoothing ... 8
 1.2.1 The linear curve scale space 9
 1.2.2 Towards an intrinsic heat equation 10
 1.3 An axiomatic approach of curve evolution 12
 1.3.1 Basic requirements 12
 1.3.2 First conclusions and first models 13
 1.4 Image and contour smoothing 15
 1.5 Applications ... 15
 1.5.1 Active contours .. 15
 1.5.2 Principles of a shape recognition algorithm 17
 1.5.3 Optical character recognition 18
 1.6 Organization of the volume 19
 1.7 Bibliographical notes 20

2 Rudimentary bases of curve geometry 23
 2.1 Jordan curves ... 23
 2.2 Length of a curve .. 24
 2.3 Euclidean parameterization 25
 2.4 Motion of graphs ... 27
Part II Theoretical curve evolution

3 Geometric curve shortening flow .. 31
 3.1 What kind of equations for curve smoothing? 32
 3.1.1 Invariant flows .. 32
 3.1.2 Symmetry group of flow 32
 3.2 Differential invariants .. 40
 3.2.1 General form of invariant flows 40
 3.2.2 The mean curvature flow is the Euclidean intrinsic heat flow 42
 3.2.3 The affine invariant flow: the simplest affine invariant
 curve flow ... 42
 3.3 General properties of second order parabolic flows: a digest 46
 3.3.1 Existence and uniqueness for mean curvature and affine
 flows .. 46
 3.3.2 Short-time existence in the general case 48
 3.3.3 Evolution of convex curves 48
 3.3.4 Evolution of the length 49
 3.3.5 Evolution of the area 49
 3.4 Smoothing staircases ... 50
 3.5 Bibliographical notes .. 53

4 Curve evolution and level sets .. 55
 4.1 From curve operators to function operators and vice versa 57
 4.1.1 Signed distance function and supporting function 57
 4.1.2 Monotone and translation invariant operators 57
 4.1.3 Level sets and their properties 58
 4.1.4 Extension of sets operators to functions operators 60
 4.1.5 Characterization of monotone, contrast invariant operator 62
 4.1.6 Asymptotic behavior of morphological operators 64
 4.1.7 Morphological operators yield PDEs 69
 4.2 Curve evolution and Scale Space theory 70
 4.2.1 Multiscale analysis are given by PDEs 70
 4.2.2 Morphological scale space 73
 4.3 Viscosity solutions ... 74
 4.3.1 Definition of viscosity solution 76
 4.3.2 Proof of uniqueness: the maximum principle 80
 4.3.3 Existence of solution by Perron’s Method 85
 4.3.4 Contrast invariance of level sets flow 88
 4.3.5 Viscosity solutions shorten level lines 89
 4.4 Morphological operators and viscosity solution 90
 4.4.1 Median filter and mean curvature motion 90
 4.4.2 Affine invariant schemes 92
 4.5 Conclusions .. 93
 4.6 Curvature thresholding ... 93
Part III Numerical curve evolution

5 Classical numerical methods for curve evolution

5.1 Parametric methods
- 5.1.1 Finite difference methods
- 5.1.2 Finite element schemes

5.2 Non parametric methods
- 5.2.1 Sethian’s level sets methods
- 5.2.2 Alvarez and Guichard’s finite differences scheme
- 5.2.3 A monotone and convergent finite difference schemes
- 5.2.4 Bence, Merriman and Osher scheme for mean curvature motion
- 5.2.5 Elliptic regularization

6 A geometrical scheme for curve evolution

6.1 Preliminary definitions

6.2 Erosion

6.3 Properties of the erosion

6.4 Erosion and level sets
- 6.4.1 Consistency
- 6.4.2 Convergence

6.5 Evolution by a power of the curvature
- 6.5.1 Consistency
- 6.5.2 Convergence

6.6 A numerical implementation of the erosion
- 6.6.1 Scale covariance
- 6.6.2 General algorithm
- 6.6.3 Eroded set and envelope
- 6.6.4 Swallow tails

6.7 Numerical experiments
- 6.7.1 Evolving circles
- 6.7.2 Convex polygons
- 6.7.3 Unclosed curve
- 6.7.4 Evolving non convex curves
- 6.7.5 Invariance
- 6.7.6 Numerical maximum principle
Geometric Curve Evolution and Image Processing
Cao, F.
2003, X, 194 p., Softcover
ISBN: 978-3-540-00402-8