Contents

Path Optimization for Nonholonomic Systems: Application to Reactive Obstacle Avoidance and Path Planning
Florent Lamiraux, David Bonnafous, Carl Van Geem

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>Nonholonomic Systems and Path Deformation</td>
<td>3</td>
</tr>
<tr>
<td>Application to the Mobile Robot Hilare Towing a Trailer</td>
<td>8</td>
</tr>
<tr>
<td>Application to Path Planning for Trucks and Trailers</td>
<td>12</td>
</tr>
<tr>
<td>Conclusion and Future Work</td>
<td>16</td>
</tr>
</tbody>
</table>

From Dynamic Programming to RRTs: Algorithmic Design of Feasible Trajectories
Steven M. LaValle

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>19</td>
</tr>
<tr>
<td>Generic Problem Formulation</td>
<td>20</td>
</tr>
<tr>
<td>Dynamic Programming</td>
<td>22</td>
</tr>
<tr>
<td>Rapidly-Exploring Random Trees</td>
<td>27</td>
</tr>
<tr>
<td>Research Challenges</td>
<td>31</td>
</tr>
</tbody>
</table>

Control of Nonprehensile Manipulation
Kevin M. Lynch, Todd D. Murphey

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>39</td>
</tr>
<tr>
<td>Definitions</td>
<td>41</td>
</tr>
<tr>
<td>Dynamic Underactuated Nonprehensile Manipulation</td>
<td>44</td>
</tr>
<tr>
<td>Distributed Manipulation and Open Problems</td>
<td>50</td>
</tr>
</tbody>
</table>

Motion Planning and Control Problems for Underactuated Robots
Sonia Martínez, Jorge Cortés, Francesco Bullo

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivating Problems from a Variety of Robotic Applications</td>
<td>59</td>
</tr>
<tr>
<td>Mathematical Unifying Approach to the Modeling of Robotic Systems</td>
<td>62</td>
</tr>
<tr>
<td>Existing Results on Planning for Underactuated Systems</td>
<td>65</td>
</tr>
<tr>
<td>Open Problems and Possible Approaches</td>
<td>69</td>
</tr>
</tbody>
</table>

Motion Description Languages for Multi-Modal Control in Robotics
Magnus Egerstedt

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>75</td>
</tr>
<tr>
<td>Motion Description Languages</td>
<td>76</td>
</tr>
<tr>
<td>Description Lengths</td>
<td>80</td>
</tr>
<tr>
<td>A Unified Approach to Control and Hardware Design</td>
<td>84</td>
</tr>
<tr>
<td>Preliminary Results</td>
<td>86</td>
</tr>
</tbody>
</table>
Polynomial Design of Dynamics-based Information Processing System

Masafumi Okada, Yoshihiko Nakamura

1 Introduction
2 Dynamics and Whole Body Motion
3 Motion Reduction and Symbolization
4 Design of Dynamics-Based Information Processing System
5 Generation of the Whole Body Motion
6 Conclusion

Actuation Methods For Human-Centered Robotics and Associated Control Challenges

Michael Zinn, Oussama Khatib, Bernard Roth, J. Kenneth Salisbury

1 Introduction
2 New Actuation Approaches
3 Conclusion

Control of a Flexible Manipulator with Noncollocated Feedback: Time Domain Passivity Approach

Jee-Hwan Ryu, Dong-Soo Kwon, Blake Hannaford

1 Introduction
2 Review of Time Domain Passivity Approach
3 Implementation Issues
4 Simulation Examples
5 Discussion

Cartesian Compliant Control Strategies for Light-Weight, Flexible Joint Robots

Alin Albu-Schäffer, Gerd Hirzinger

1 Introduction
2 Cartesian Compliant Control
3 Control of the flexible joint robot
4 Experiments
5 Discussion
6 Conclusion

Toward the Control of Self-Assembling Systems

Éric Klavins

1 Introduction
2 Related Work
3 Modeling
4 Discussion
5 Conclusion
Contents

Towards Abstraction and Control for Large Groups of Robots

Calin Belta, Vijay Kumar

1. Introduction ... 169
2. Definitions and Problem Formulation 171
3. Mean and Covariance Control for Fully Actuated Planar Robots ... 173
4. Mean and Variance Control for Fully Actuated Planar Robots ... 179
5. Conclusion .. 182

Omnidirectional Sensing for Robot Control

Kostas Daniilidis, Christopher Geyer, Volkan Isler, Ameesh Makadia

1. Introduction ... 183
2. A Unifying Projection Model 184
3. The Signal Question .. 185
4. The Geometry Question 187
5. The Planning Question 191
6. Future Work .. 196

A Passivity Approach to Vision-based Dynamic Control of Robots with Nonlinear Observer

Hiroyuki Kawai, Shintaro Izoe, Masayuki Fujita

1. Introduction ... 199
2. Relative Rigid Body Motion 201
3. Visual Feedback System 202
4. Vision-based Robot Control 207
5. Conclusions ... 212

Visual Servoing along Epipoles

Jacopo Piazzi, Domenico Prattichizzo, Antonio Vicino

1. Introduction ... 215
2. Notation .. 216
3. Visual Servoing Algorithm 218
4. Experiments ... 226
5. Conclusions and Open Problems 228

Toward Geometric Visual Servoing

Noah John Cowan, Dong Eui Chang

1. Introduction ... 233
2. Six DOF Diffeomorphism to Image-space 235
3. Image Jacobian .. 240
4. Controller ... 242
5. Conclusion .. 245
Vision-Based Online Trajectory Generation and Its Application to Catching .. 249
Akio Namiki, Masatoshi Ishikawa
1 Introduction ... 249
2 Related Works ... 250
3 Vision-Based Online Trajectory Generator 251
4 Experiment ... 257
5 Conclusion .. 259

Stability Analysis of Invariant Visual Servoing and Robustness to Parametric Uncertainties 265
Ezio Malis
1 Introduction ... 265
2 Modeling ... 267
3 Vision-based control 269
4 Stability Analysis ... 270
5 Robustness to Parametric Uncertainties 271
6 Open problems ... 273
7 Experimental Results 274
8 Conclusion .. 277
Control Problems in Robotics
Bicchi, A.; Christensen, H.; Prattichizzo, D. (Eds.)
2003, XIV, 282 p., Hardcover