Contents

Section A: Introduction

1 Towards Ecological Relevance –
Progress and Pitfalls in the Path Towards
an Understanding of Mycorrhizal Functions in Nature . . . 3
D.J. Read

1.1 Summary 3
1.2 Introduction 4
1.3 The Platform Provided by Reductionist Approaches 4
1.4 Approaches to Examination of Mycorrhizal Function
at the Community Level 8
1.4.1 The Microcosm Approach 10
1.4.2 The Field Approach 21
1.5 Conclusion 23
References 24

Section B: Ecophysiology, Ecosystems Effects and Global Change

2 Carbon and Nutrient Fluxes Within
and Between Mycorrhizal Plants 33
S.W. Simard, D. Durall, M. Jones

2.1 Summary 34
2.2 Introduction 34
2.3 Ecto-mycorrhiza and Nutrient Uptake 35
2.3.1 Quantitative Effects of Ecto-mycorrhiza
on Nutrient Uptake by Plants 35
2.3.2 Mechanisms of Increased Nutrient Uptake 39
2.3.3 Transport of Nutrients Within the Ecto-mycorrhizal
Fungal Mycelium 43
2.4 Carbon Flux in Ecto-mycorrhizal Plants 44
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Mechanism of Carbon Exchange Between Symbionts</td>
<td>44</td>
</tr>
<tr>
<td>2.4.2 Quantification of Belowground C Partitioning</td>
<td>45</td>
</tr>
<tr>
<td>2.4.3 Biological and Physical Effects on Belowground Carbon Partitioning</td>
<td>46</td>
</tr>
<tr>
<td>2.5 Carbon and Nutrient Transfers Between Plants</td>
<td>47</td>
</tr>
<tr>
<td>2.5.1 Hyphal Links Between Plants</td>
<td>47</td>
</tr>
<tr>
<td>2.5.2 Carbon and Nutrient Transfer Between Plants</td>
<td>50</td>
</tr>
<tr>
<td>2.5.3 Factors Regulating Carbon and Nutrient Transfer</td>
<td>55</td>
</tr>
<tr>
<td>2.6 Conclusions on the Ecological Significance of Interplant Transfer</td>
<td>59</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
</tbody>
</table>

3 Function and Diversity of Arbuscular Mycorrhizae in Carbon and Mineral Nutrition 75
I. Jakobsen, S.E. Smith, F.A. Smith

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Summary</td>
<td>75</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>76</td>
</tr>
<tr>
<td>3.2 Carbon Nutrition and Growth of the Fungus</td>
<td>76</td>
</tr>
<tr>
<td>3.3 Mineral Nutrition of the Fungus</td>
<td>79</td>
</tr>
<tr>
<td>3.4 Nutrition of the Plant: The Autotrophic Symbiont</td>
<td>82</td>
</tr>
<tr>
<td>3.5 Mycorrhizal Responsiveness</td>
<td>84</td>
</tr>
<tr>
<td>3.6 From Individual Symbioses to Plant Communities</td>
<td>87</td>
</tr>
<tr>
<td>References</td>
<td>88</td>
</tr>
</tbody>
</table>

4 Foraging and Resource Allocation Strategies of Mycorrhizal Fungi in a Patchy Environment 93
P.A. Olsson, I. Jakobsen, H. Wallander

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Summary</td>
<td>93</td>
</tr>
<tr>
<td>4.2 Introduction</td>
<td>94</td>
</tr>
<tr>
<td>4.3 The Mycorrhizal Mycelium</td>
<td>98</td>
</tr>
<tr>
<td>4.3.1 Structures and Growth Rates</td>
<td>98</td>
</tr>
<tr>
<td>4.3.2 Density of the Mycelium Front</td>
<td>99</td>
</tr>
<tr>
<td>4.3.3 Energy Storage</td>
<td>100</td>
</tr>
<tr>
<td>4.4 Foraging of the Ecto-mycorrhizal Mycelium</td>
<td>100</td>
</tr>
<tr>
<td>4.4.1 Response to Inorganic Nutrients</td>
<td>100</td>
</tr>
<tr>
<td>4.4.2 Response to Organic Nutrient Sources</td>
<td>101</td>
</tr>
<tr>
<td>4.4.3 Response to Plant Roots</td>
<td>102</td>
</tr>
<tr>
<td>4.5 Foraging of the Arbuscular Mycorrhizal Mycelium</td>
<td>102</td>
</tr>
<tr>
<td>4.5.1 Response to Inorganic Nutrients</td>
<td>102</td>
</tr>
</tbody>
</table>
4.5.2 Response to Organic Material and Compounds
103

4.5.3 Response to Plant Roots
104

4.6 Differences in Foraging Strategies Between Arbuscular Mycorrhizal and Ecto-mycorrhizal Fungi
104

4.7 Models and Theories on the Foraging of Mycorrhizal Fungi
105

4.8 Conclusions and Future Perspectives
109

References
110

5 The Role of Various Types of Mycorrhizal Fungi in Nutrient Cycling and Plant Competition
117

R. Aerts

5.1 Summary
117

5.2 Introduction
118

5.3 Soil Nutrient Sources
120

5.4 Different Mycorrhizal Types Can Tap Different Soil Nutrient Sources
122

5.5 Vascular Plant 15N Natural Abundance as an Indicator for the Type of Mycorrhiza-Mediated Plant Nutrition?
124

5.6 A Conceptual Model for Mycorrhizal Impacts on Plant Competition and Coexistence
125

5.7 Effects of Increased Nitrogen Deposition
127

5.8 Plant-Soil Feedbacks: Mineralization or ‘Organicisation’?
129

5.9 Future Challenges
130

References
131

6 Global Change and Mycorrhizal Fungi
135

M. Rillig, K.K. Treseder, M.F. Allen

6.1 Summary
135

6.2 Introduction
136

6.2.1 What Is Global Change?
136

6.2.2 Rationale for Considering Mycorrhizae in Global Change Biology
138

6.3 Global Change: Multiple Factors
139

6.3.1 Elevated Atmospheric CO$_2$
139

6.3.2 Nitrogen Deposition
143

6.3.3 Altered Precipitation and Temperature
144

6.3.4 Ozone
147

6.3.5 UV Radiation
148

6.4 Global Change Factor Interactions
149
Section C: Biodiversity, Plant and Fungal Communities

7 Diversity of Ecto-mycorrhizal Fungal Communities in Relation to the Abiotic Environment

S. Erland, A.F.S. Taylor

7.1 Summary 163
7.2 Introduction 164
7.3 Natural Abiotic Factors Influencing Ecto-mycorrhizal Community Structure 172
7.3.1 Edaphic Factors 172
7.3.2 Soil Organic Matter and Spatial Heterogeneity 173
7.3.3 Moisture 175
7.3.4 pH 176
7.3.5 Temperature 177
7.3.6 Wildfire 177
7.4 Effects of Pollution and Forest Management Practices on Ecto-mycorrhizal Fungal Communities 179
7.4.1 Elevated CO₂ 179
7.4.2 Ozone 180
7.4.3 Heavy Metals 180
7.4.4 N-Deposition and Fertilisation 181
7.4.5 Acidification 184
7.4.6 Liming 185
7.4.7 Wood Ash Application and Vitality Fertilisation 186
7.5 Conclusions 187
7.6 Future Progress 192
References 193
8 Genetic Studies of the Structure and Diversity of Arbuscular Mycorrhizal Fungal Communities

J.P. Clapp, T. Helgason, T.J. Daniell, J.P.W. Young

8.1 Summary
8.2 Introduction
8.2.1 The Importance of Community Structure in Arbuscular Mycorrhizal Fungi
8.2.2 Molecular Identification of Arbuscular Mycorrhizal Fungi
8.3 Strategies for Identifying Arbuscular Mycorrhizal Fungi Using Molecular Markers
8.3.1 Methods Available
8.3.2 Primers Developed for Analysis of Arbuscular Mycorrhizal Fungal Ribosomal Genes: A Short History
8.4 Investigations of Arbuscular Mycorrhizal Fungal Communities
8.4.1 Primers that Target Single Families or Species
8.4.2 Primers Intended to Target all Glomalean Fungi
8.4.3 Alternative Approaches to Molecular Characterisation of Arbuscular Mycorrhizal Fungi
8.5 Comparison of Molecular and Morphological Data
8.5.1 Phylogeny and Taxonomy
8.5.2 Field Data
8.6 The Genetic Organisation of Arbuscular Mycorrhizal Fungi
8.6.1 Heterogeneous Sequences in Spores and Cultures
8.6.2 “Contaminant” Sequences in Spores and Cultures
8.6.3 How Is the Sequence Heterogeneity Organised?
8.6.4 How Is Sequence Heterogeneity Maintained?
8.6.5 How Does This Affect Analysis of Field Sequences?
8.7 Future Prospects
References

9 Diversity of Arbuscular Mycorrhizal Fungi and Ecosystem Functioning

M. Hart, J.N. Klironomos

9.1 Summary
9.2 Introduction
9.3 Linking Biodiversity and Ecosystem Function
9.4 Arbuscular Mycorrhizal Fungal Diversity and Ecosystem Functioning
9.4.1 Arbuscular Mycorrhizal Fungal Networks
Section D: Multitrophic Interactions

12 Mycorrhizae-Herbivore Interactions: Population and Community Consequences 295
G.A. GEHRING, T.G. WHITHAM

12.1 Summary .. 295
12.2 Introduction .. 296
12.3 Effects of Aboveground Herbivory on Mycorrhizal Fungi 297
12.3.1 Population Level Responses ... 297
12.3.2 Community Level Responses ... 299
12.3.3 Carbon Limitation as a Mechanism of Herbivore Impacts on Mycorrhizae 301
12.3.4 Conditionality in Mycorrhizal Responses to Herbivory 302
12.4 Effects of Mycorrhizal Fungi on the Performance of Herbivores 305
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3 Biodiversity, Plant and Fungal Communities</td>
<td>446</td>
</tr>
<tr>
<td>17.4 Multitrophic Interactions</td>
<td>449</td>
</tr>
<tr>
<td>17.5 Host Specificity and Co-evolution</td>
<td>450</td>
</tr>
<tr>
<td>17.6 Conclusions</td>
<td>452</td>
</tr>
<tr>
<td>References</td>
<td>454</td>
</tr>
<tr>
<td>Subject Index</td>
<td>457</td>
</tr>
<tr>
<td>Taxonomic Index</td>
<td>465</td>
</tr>
</tbody>
</table>
Mycorrhizal Ecology
van der Heijden, M.G.A.; Sanders, I.R. (Eds.)
2003, XXIV, 471 p., Softcover
ISBN: 978-3-540-00204-8