Contents

Section A: Introduction

1. **Towards Ecological Relevance – Progress and Pitfalls in the Path Towards an Understanding of Mycorrhizal Functions in Nature**
 D.J. Read

 1.1 Summary .. 3
 1.2 Introduction 4
 1.3 The Platform Provided by Reductionist Approaches 4
 1.4 Approaches to Examination of Mycorrhizal Function at the Community Level 8
 1.4.1 The Microcosm Approach 10
 1.4.2 The Field Approach 21
 1.5 Conclusion 23
 References 24

Section B: Ecophysiology, Ecosystems Effects and Global Change

2. **Carbon and Nutrient Fluxes Within and Between Mycorrhizal Plants**
 S.W. Simard, D. Durall, M. Jones

 2.1 Summary .. 34
 2.2 Introduction 34
 2.3 Ecto-mycorrhiza and Nutrient Uptake 35
 2.3.1 Quantitative Effects of Ecto-mycorrhiza on Nutrient Uptake by Plants 35
 2.3.2 Mechanisms of Increased Nutrient Uptake 39
 2.3.3 Transport of Nutrients Within the Ecto-mycorrhizal Fungal Mycelium 43
 2.4 Carbon Flux in Ecto-mycorrhizal Plants 44
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Mechanism of Carbon Exchange Between Symbionts</td>
<td>44</td>
</tr>
<tr>
<td>2.4.2 Quantification of Belowground C Partitioning</td>
<td>45</td>
</tr>
<tr>
<td>2.4.3 Biological and Physical Effects on Belowground Carbon Partitioning</td>
<td>46</td>
</tr>
<tr>
<td>2.5 Carbon and Nutrient Transfers Between Plants</td>
<td>47</td>
</tr>
<tr>
<td>2.5.1 Hyphal Links Between Plants</td>
<td>47</td>
</tr>
<tr>
<td>2.5.2 Carbon and Nutrient Transfer Between Plants</td>
<td>50</td>
</tr>
<tr>
<td>2.5.3 Factors Regulating Carbon and Nutrient Transfer</td>
<td>55</td>
</tr>
<tr>
<td>2.6 Conclusions on the Ecological Significance of Interplant Transfer</td>
<td>59</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
</tbody>
</table>

3 Function and Diversity of Arbuscular Mycorrhizae in Carbon and Mineral Nutrition

I. Jakobsen, S.E. Smith, F.A. Smith

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Summary</td>
<td>75</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>76</td>
</tr>
<tr>
<td>3.2 Carbon Nutrition and Growth of the Fungus</td>
<td>76</td>
</tr>
<tr>
<td>3.3 Mineral Nutrition of the Fungus</td>
<td>79</td>
</tr>
<tr>
<td>3.4 Nutrition of the Plant: The Autotrophic Symbiont</td>
<td>82</td>
</tr>
<tr>
<td>3.5 Mycorrhizal Responsiveness</td>
<td>84</td>
</tr>
<tr>
<td>3.6 From Individual Symbioses to Plant Communities</td>
<td>87</td>
</tr>
<tr>
<td>References</td>
<td>88</td>
</tr>
</tbody>
</table>

4 Foraging and Resource Allocation Strategies of Mycorrhizal Fungi in a Patchy Environment

P.A. Olsson, I. Jakobsen, H. Wallander

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Summary</td>
<td>93</td>
</tr>
<tr>
<td>4.2 Introduction</td>
<td>94</td>
</tr>
<tr>
<td>4.3 The Mycorrhizal Mycelium</td>
<td>98</td>
</tr>
<tr>
<td>4.3.1 Structures and Growth Rates</td>
<td>98</td>
</tr>
<tr>
<td>4.3.2 Density of the Mycelium Front</td>
<td>99</td>
</tr>
<tr>
<td>4.3.3 Energy Storage</td>
<td>100</td>
</tr>
<tr>
<td>4.4 Foraging of the Ecto-mycorrhizal Mycelium</td>
<td>100</td>
</tr>
<tr>
<td>4.4.1 Response to Inorganic Nutrients</td>
<td>100</td>
</tr>
<tr>
<td>4.4.2 Response to Organic Nutrient Sources</td>
<td>101</td>
</tr>
<tr>
<td>4.4.3 Response to Plant Roots</td>
<td>102</td>
</tr>
<tr>
<td>4.5 Foraging of the Arbuscular Mycorrhizal Mycelium</td>
<td>102</td>
</tr>
<tr>
<td>4.5.1 Response to Inorganic Nutrients</td>
<td>102</td>
</tr>
</tbody>
</table>
4.5.2 Response to Organic Material and Compounds 103
4.5.3 Response to Plant Roots 104
4.6 Differences in Foraging Strategies Between
Arbuscular Mycorhizal and Ecto-mycorrhizal Fungi 104
4.7 Models and Theories on the Foraging of Mycorrhizal Fungi 105
4.8 Conclusions and Future Perspectives 109
References ... 110

5 The Role of Various Types of Mycorrhizal Fungi
in Nutrient Cycling and Plant Competition 117
R. Aerts

5.1 Summary ... 117
5.2 Introduction ... 118
5.3 Soil Nutrient Sources .. 120
5.4 Different Mycorrhizal Types Can Tap
Different Soil Nutrient Sources 122
5.5 Vascular Plant 15N Natural Abundance as an Indicator
for the Type of Mycorrhiza-Mediated Plant Nutrition? 124
5.6 A Conceptual Model for Mycorrhizal Impacts
on Plant Competition and Coexistence 125
5.7 Effects of Increased Nitrogen Deposition 127
5.8 Plant-Soil Feedbacks: Mineralization or ‘Organicisation’? 129
5.9 Future Challenges .. 130
References ... 131

6 Global Change and Mycorrhizal Fungi 135
M. Rillig, K.K. Treseder, M.F. Allen

6.1 Summary ... 135
6.2 Introduction ... 136
6.2.1 What Is Global Change? 136
6.2.2 Rationale for Considering Mycorrhizae
in Global Change Biology 138
6.3 Global Change: Multiple Factors 139
6.3.1 Elevated Atmospheric CO$_2$ 139
6.3.2 Nitrogen Deposition ... 143
6.3.3 Altered Precipitation and Temperature 144
6.3.4 Ozone ... 147
6.3.5 UV Radiation .. 148
6.4 Global Change Factor Interactions 149

References ... 150
Section C: Biodiversity, Plant and Fungal Communities

7 Diversity of Ecto-mycorrhizal Fungal Communities in Relation to the Abiotic Environment ... 163
S. ERLAND, A.F.S. TAYLOR

7.1 Summary ... 163
7.2 Introduction ... 164
7.3 Natural Abiotic Factors Influencing Ecto-mycorrhizal Community Structure .. 172
7.3.1 Edaphic Factors .. 172
7.3.2 Soil Organic Matter and Spatial Heterogeneity 173
7.3.3 Moisture ... 175
7.3.4 pH .. 176
7.3.5 Temperature ... 177
7.3.6 Wildfire ... 177
7.4 Effects of Pollution and Forest Management Practices on Ecto-mycorrhizal Fungal Communities 179
7.4.1 Elevated CO₂ .. 179
7.4.2 Ozone .. 180
7.4.3 Heavy Metals ... 180
7.4.4 N-Deposition and Fertilisation 181
7.4.5 Acidification ... 184
7.4.6 Liming ... 185
7.4.7 Wood Ash Application and Vitality Fertilisation 186
7.5 Conclusions ... 187
7.6 Future Progress ... 192
References ... 193
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Genetic Studies of the Structure and Diversity of Arbuscular Mycorrhizal Fungal Communities</td>
<td>201</td>
</tr>
<tr>
<td>8.1 Summary</td>
<td>202</td>
</tr>
<tr>
<td>8.2 Introduction</td>
<td>202</td>
</tr>
<tr>
<td>8.2.1 The Importance of Community Structure in Arbuscular Mycorrhizal Fungi</td>
<td>202</td>
</tr>
<tr>
<td>8.2.2 Molecular Identification of Arbuscular Mycorrhizal Fungi</td>
<td>203</td>
</tr>
<tr>
<td>8.3 Strategies for Identifying Arbuscular Mycorrhizal Fungi Using Molecular Markers</td>
<td>205</td>
</tr>
<tr>
<td>8.3.1 Methods Available</td>
<td>205</td>
</tr>
<tr>
<td>8.3.2 Primers Developed for Analysis of Arbuscular Mycorrhizal Fungal Ribosomal Genes: A Short History</td>
<td>206</td>
</tr>
<tr>
<td>8.4 Investigations of Arbuscular Mycorrhizal Fungal Communities</td>
<td>208</td>
</tr>
<tr>
<td>8.4.1 Primers that Target Single Families or Species</td>
<td>208</td>
</tr>
<tr>
<td>8.4.2 Primers Intended to Target all Glomalean Fungi</td>
<td>209</td>
</tr>
<tr>
<td>8.4.3 Alternative Approaches to Molecular Characterisation of Arbuscular Mycorrhizal Fungi</td>
<td>212</td>
</tr>
<tr>
<td>8.5 Comparison of Molecular and Morphological Data</td>
<td>212</td>
</tr>
<tr>
<td>8.5.1 Phylogeny and Taxonomy</td>
<td>213</td>
</tr>
<tr>
<td>8.5.2 Field Data</td>
<td>213</td>
</tr>
<tr>
<td>8.6 The Genetic Organisation of Arbuscular Mycorrhizal Fungi</td>
<td>215</td>
</tr>
<tr>
<td>8.6.1 Heterogeneous Sequences in Spores and Cultures</td>
<td>215</td>
</tr>
<tr>
<td>8.6.2 “Contaminant” Sequences in Spores and Cultures</td>
<td>217</td>
</tr>
<tr>
<td>8.6.3 How Is the Sequence Heterogeneity Organised?</td>
<td>218</td>
</tr>
<tr>
<td>8.6.4 How Is Sequence Heterogeneity Maintained?</td>
<td>219</td>
</tr>
<tr>
<td>8.6.5 How Does This Affect Analysis of Field Sequences?</td>
<td>220</td>
</tr>
<tr>
<td>8.7 Future Prospects</td>
<td>221</td>
</tr>
<tr>
<td>References</td>
<td>221</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 Diversity of Arbuscular Mycorrhizal Fungi and Ecosystem Functioning</td>
<td>225</td>
</tr>
<tr>
<td>9.1 Summary</td>
<td>225</td>
</tr>
<tr>
<td>9.2 Introduction</td>
<td>226</td>
</tr>
<tr>
<td>9.3 Linking Biodiversity and Ecosystem Function</td>
<td>227</td>
</tr>
<tr>
<td>9.4 Arbuscular Mycorrhizal Fungal Diversity and Ecosystem Functioning</td>
<td>229</td>
</tr>
<tr>
<td>9.4.1 Arbuscular Mycorrhizal Fungal Networks</td>
<td>229</td>
</tr>
</tbody>
</table>
Section D: Multitrophic Interactions

12 Mycorrhizae-Herbivore Interactions: Population and Community Consequences 295
G.A. GEHRING, T.G. WHITHAM

12.1 Summary .. 295
12.2 Introduction ... 296
12.3 Effects of Aboveground Herbivory on Mycorrhizal Fungi 297
12.3.1 Population Level Responses 297
12.3.2 Community Level Responses 299
12.3.3 Carbon Limitation as a Mechanism of Herbivore Impacts on Mycorrhizae 301
12.3.4 Conditionality in Mycorrhizal Responses to Herbivory 302
12.4 Effects of Mycorrhizal Fungi on the Performance of Herbivores 305
12.4.1 Patterns of Interaction ... 305
12.4.2 Mechanisms of Mycorrhizal Impacts on Herbivores 307
12.4.3 Not All Mycorrhizae Are Equal 308
12.5 Ecological and Evolutionary Implications 311
12.5.1 Herbivore Effects on Mycorrhizae 311
12.5.2 Mycorrhizae Effects on Herbivores 312
12.5.3 Combined Effects ... 314
12.6 Suggestions for Future Research 315
References ... 316

13 Actions and Interactions of Soil Invertebrates and Arbuscular Mycorrhizal Fungi in Affecting the Structure of Plant Communities ... 321
A.C. Gange, V.K. Brown

13.1 Summary ... 321
13.2 Introduction .. 322
13.3 Soil Invertebrate Groups ... 323
13.3.1 Earthworms ... 324
13.3.2 Nematodes .. 325
13.3.3 Mites ... 327
13.3.4 Insects ... 328
13.3.5 Other Invertebrates .. 333
13.4 Field Studies ... 333
13.5 Conclusions .. 340
References ... 341

14 Interactions Between Ecto-mycorrhizal Fungi and Saprotrophic Fungi ... 345
J.R. Leake, D.P. Donnelly, L. Boddy

14.1 Summary ... 346
14.2 Introduction .. 346
14.2.1 The Importance of Ecto-mycorrhizal and Saprotrophic Fungi in Forest Soils 347
14.2.2 Structural and Functional Similarities Between Mycelia of Saprotrophic and Ecto-mycorrhizal Fungi ... 348
14.3 Competition for Nutrients Between Ecto-mycorrhizal and Saprotrophic Fungi 353
Section E: Host Specificity and Co-evolution

15 Mycorrhizal Specificity and Function in Myco-heterotrophic Plants 375
D.L. Taylor, T.D. Bruns, J.R. Leake, D.J. Read

15.1 Summary 375
15.2 Introduction 376
15.3 Evidence for Specificity in Myco-heterotrophs 377
15.3.1 Overview of Specificity in the Orchidaceae 378
15.3.2 Overview of Specificity in the Monotropoideae 393
15.4 Influences on Specificity 395
15.4.1 Local Distribution of Fungi 395
15.4.2 Habitat and Genetic Influences on Specificity 396
15.4.3 Ontogenetic Influences on Specificity 397
15.5 Evolution of Specificity 399
15.6 Fungal Trophic Niches and Mycorrhizal Carbon Dynamics 399
15.7 Conclusions and Future Goals 405
References 407
16 Specificity in the Arbuscular Mycorrhizal Symbiosis

I.R. Sanders

16.1 Summary
16.2 Introduction
16.3 Definitions of Specificity
16.4 Why Is Specificity in the Mycorrhizal Symbiosis Ecologically Interesting?
16.5 Theoretical Considerations on the Evolution of Specificity in Mutualistic Symbioses
16.6 Why Do We Not Already Know Whether Specificity Exists?
16.7 Evidence Supporting a Lack of Specificity
16.7.1 Arbuscular Mycorrhizal Fungi Have a Broad Host Range
16.7.2 A Systematic Perspective
16.7.3 Repeatable Patterns of Arbuscular Mycorrhizal Fungal Community Structure
16.7.4 Physiological Evidence
16.8 Evidence Supporting Specificity
16.8.1 Arbuscular Mycorrhizal Fungal Effects on Plant Fitness
16.8.2 Plant Species Effects on Fungal Fitness
16.9 What Information Is Missing and Which Experiments Are Needed?
16.9.1 Arbuscular Mycorrhizal Fungal Benefit from Specific Hosts
16.9.2 Reciprocal Benefit Between Plant Species and Fungal Species
16.9.3 A Genetic Basis for Specificity in Plants
16.9.4 A Genetic Basis for Specificity in Arbuscular Mycorrhizal Fungi
16.9.5 The Importance of the Hyphal Network for Understanding Specificity
16.10 Conclusions
References

Section F: Conclusions

17 Mycorrhizal Ecology: Synthesis and Perspectives

M.G.A. van der Heijden, I.R. Sanders

17.1 Introduction
17.2 Ecophysiology, Ecosystem Effects and Global Change
Mycorrhizal Ecology
van der Heijden, M.G.A.; Sanders, I.R. (Eds.)
2003, XXIV, 471 p., Softcover
ISBN: 978-3-540-00204-8