Contents

Section A: Introduction

1 **Towards Ecological Relevance – Progress and Pitfalls in the Path Towards an Understanding of Mycorrhizal Functions in Nature**

D.J. Read

1.1 Summary	3
1.2 Introduction	4
1.3 The Platform Provided by Reductionist Approaches	4
1.4 Approaches to Examination of Mycorrhizal Function at the Community Level	8
1.4.1 The Microcosm Approach	10
1.4.2 The Field Approach	21
1.5 Conclusion	23
References	24

Section B: Ecophysiology, Ecosystems Effects and Global Change

2 **Carbon and Nutrient Fluxes Within and Between Mycorrhizal Plants**

S.W. Simard, D. Durall, M. Jones

<p>| 2.1 Summary | 34 |
| 2.2 Introduction | 34 |
| 2.3 Ecto-mycorrhiza and Nutrient Uptake | 35 |
| 2.3.1 Quantitative Effects of Ecto-mycorrhiza on Nutrient Uptake by Plants | 35 |
| 2.3.2 Mechanisms of Increased Nutrient Uptake | 39 |
| 2.3.3 Transport of Nutrients Within the Ecto-mycorrhizal Fungal Mycelium | 43 |
| 2.4 Carbon Flux in Ecto-mycorrhizal Plants | 44 |</p>
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.1 Mechanism of Carbon Exchange Between Symbionts</td>
<td>44</td>
</tr>
<tr>
<td>2.4.2 Quantification of Belowground C Partitioning</td>
<td>45</td>
</tr>
<tr>
<td>2.4.3 Biological and Physical Effects on Belowground Carbon Partitioning</td>
<td>46</td>
</tr>
<tr>
<td>2.5 Carbon and Nutrient Transfers Between Plants</td>
<td>47</td>
</tr>
<tr>
<td>2.5.1 Hyphal Links Between Plants</td>
<td>47</td>
</tr>
<tr>
<td>2.5.2 Carbon and Nutrient Transfer Between Plants</td>
<td>50</td>
</tr>
<tr>
<td>2.5.3 Factors Regulating Carbon and Nutrient Transfer</td>
<td>55</td>
</tr>
<tr>
<td>2.6 Conclusions on the Ecological Significance of Interplant Transfer</td>
<td>59</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
</tr>
</tbody>
</table>

3 Function and Diversity of Arbuscular Mycorrhizae in Carbon and Mineral Nutrition
I. Jakobsen, S.E. Smith, F.A. Smith

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1 Summary</td>
<td>75</td>
</tr>
<tr>
<td>3.2 Carbon Nutrition and Growth of the Fungus</td>
<td>76</td>
</tr>
<tr>
<td>3.3 Mineral Nutrition of the Fungus</td>
<td>79</td>
</tr>
<tr>
<td>3.4 Nutrition of the Plant: The Autotrophic Symbiont</td>
<td>82</td>
</tr>
<tr>
<td>3.5 Mycorrhizal Responsiveness</td>
<td>84</td>
</tr>
<tr>
<td>3.6 From Individual Symbioses to Plant Communities</td>
<td>87</td>
</tr>
<tr>
<td>References</td>
<td>88</td>
</tr>
</tbody>
</table>

4 Foraging and Resource Allocation Strategies of Mycorrhizal Fungi in a Patchy Environment
P.A. Olsson, I. Jakobsen, H. Wallander

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Summary</td>
<td>93</td>
</tr>
<tr>
<td>4.2 Introduction</td>
<td>94</td>
</tr>
<tr>
<td>4.3 The Mycorrhizal Mycelium</td>
<td>98</td>
</tr>
<tr>
<td>4.3.1 Structures and Growth Rates</td>
<td>98</td>
</tr>
<tr>
<td>4.3.2 Density of the Mycelium Front</td>
<td>99</td>
</tr>
<tr>
<td>4.3.3 Energy Storage</td>
<td>100</td>
</tr>
<tr>
<td>4.4 Foraging of the Ecto-mycorrhizal Mycelium</td>
<td>100</td>
</tr>
<tr>
<td>4.4.1 Response to Inorganic Nutrients</td>
<td>100</td>
</tr>
<tr>
<td>4.4.2 Response to Organic Nutrient Sources</td>
<td>101</td>
</tr>
<tr>
<td>4.4.3 Response to Plant Roots</td>
<td>102</td>
</tr>
<tr>
<td>4.5 Foraging of the Arbuscular Mycorrhizal Mycelium</td>
<td>102</td>
</tr>
<tr>
<td>4.5.1 Response to Inorganic Nutrients</td>
<td>102</td>
</tr>
</tbody>
</table>
4.5.2 Response to Organic Material and Compounds

4.5.3 Response to Plant Roots

4.6 Differences in Foraging Strategies Between Arbuscular Mycorhizal and Ecto-mycorrhizal Fungi

4.7 Models and Theories on the Foraging of Mycorrhizal Fungi

4.8 Conclusions and Future Perspectives

References

5 The Role of Various Types of Mycorrhizal Fungi in Nutrient Cycling and Plant Competition

R. Aerts

5.1 Summary

5.2 Introduction

5.3 Soil Nutrient Sources

5.4 Different Mycorrhizal Types Can Tap Different Soil Nutrient Sources

5.5 Vascular Plant 15N Natural Abundance as an Indicator for the Type of Mycorrhiza-Mediated Plant Nutrition?

5.6 A Conceptual Model for Mycorrhizal Impacts on Plant Competition and Coexistence

5.7 Effects of Increased Nitrogen Deposition

5.8 Plant-Soil Feedbacks: Mineralization or ‘Organicisation’?

5.9 Future Challenges

References

6 Global Change and Mycorrhizal Fungi

M. Rillig, K.K. Treseder, M.F. Allen

6.1 Summary

6.2 Introduction

6.2.1 What Is Global Change?

6.2.2 Rationale for Considering Mycorrhizae in Global Change Biology

6.3 Global Change: Multiple Factors

6.3.1 Elevated Atmospheric CO_2

6.3.2 Nitrogen Deposition

6.3.3 Altered Precipitation and Temperature

6.3.4 Ozone

6.3.5 UV Radiation

6.4 Global Change Factor Interactions

References
Section C: Biodiversity, Plant and Fungal Communities

7 Diversity of Ecto-mycorrhizal Fungal Communities in Relation to the Abiotic Environment

S. Erland, A.F.S. Taylor

7.1 Summary

7.2 Introduction

7.3 Natural Abiotic Factors Influencing Ecto-mycorrhizal Community Structure

7.3.1 Edaphic Factors

7.3.2 Soil Organic Matter and Spatial Heterogeneity

7.3.3 Moisture

7.3.4 pH

7.3.5 Temperature

7.3.6 Wildfire

7.4 Effects of Pollution and Forest Management Practices on Ecto-mycorrhizal Fungal Communities

7.4.1 Elevated CO₂

7.4.2 Ozone

7.4.3 Heavy Metals

7.4.4 N-Deposition and Fertilisation

7.4.5 Acidification

7.4.6 Liming

7.4.7 Wood Ash Application and Vitality Fertilisation

7.5 Conclusions

7.6 Future Progress

References
8 Genetic Studies of the Structure and Diversity of Arbuscular Mycorrhizal Fungal Communities

J.P. Clapp, T. Helgason, T.J. Daniell, J.P.W. Young

8.1 Summary

8.2 Introduction

8.2.1 The Importance of Community Structure in Arbuscular Mycorrhizal Fungi

8.2.2 Molecular Identification of Arbuscular Mycorrhizal Fungi

8.3 Strategies for Identifying Arbuscular Mycorrhizal Fungi Using Molecular Markers

8.3.1 Methods Available

8.3.2 Primers Developed for Analysis of Arbuscular Mycorrhizal Fungal Ribosomal Genes: A Short History

8.4 Investigations of Arbuscular Mycorrhizal Fungal Communities

8.4.1 Primers that Target Single Families or Species

8.4.2 Primers Intended to Target all Glomalean Fungi

8.4.3 Alternative Approaches to Molecular Characterisation of Arbuscular Mycorrhizal Fungi

8.5 Comparison of Molecular and Morphological Data

8.5.1 Phylogeny and Taxonomy

8.5.2 Field Data

8.6 The Genetic Organisation of Arbuscular Mycorrhizal Fungi

8.6.1 Heterogeneous Sequences in Spores and Cultures

8.6.2 “Contaminant” Sequences in Spores and Cultures

8.6.3 How Is the Sequence Heterogeneity Organised?

8.6.4 How Is Sequence Heterogeneity Maintained?

8.6.5 How Does This Affect Analysis of Field Sequences?

8.7 Future Prospects

References

9 Diversity of Arbuscular Mycorrhizal Fungi and Ecosystem Functioning

M. Hart, J.N. Klironomos

9.1 Summary

9.2 Introduction

9.3 Linking Biodiversity and Ecosystem Function

9.4 Arbuscular Mycorrhizal Fungal Diversity and Ecosystem Functioning

9.4.1 Arbuscular Mycorrhizal Fungal Networks
9.4.2 Functional Specificity
- Page 230

9.4.3 Differential Effects
- Page 231

9.4.4 Community Effects
- Page 231

9.5 Succession of Arbuscular Mycorrhizal Fungi
- Page 237

9.6 Conclusions
- Page 239

References
- Page 239

10 Arbuscular Mycorrhizal Fungi as a Determinant of Plant Diversity: In Search for Underlying Mechanisms and General Principles

M.G.A. van der Heijden

10.1 Summary
- Page 243

10.2 Introduction
- Page 244

10.3 Arbuscular Mycorrhizal Fungi as a Determinant of Plant Diversity
- Page 245

10.3.1 Importance of Plant Species Composition and Nutrient Availability
- Page 245

10.3.2 Mycorrhizal Dependency
- Page 249

10.3.3 Underlying Mechanisms and Explaining Models
- Page 252

10.4 Ecological Significance of Arbuscular Mycorrhizal Fungal Diversity
- Page 255

10.4.1 Influence on Plants and Plant Communities
- Page 255

10.4.2 Thoughts on Underlying Mechanisms
- Page 256

10.4.3 Mycorrhizal Species Sensitivity
- Page 258

10.5 Conclusions
- Page 260

References
- Page 261

11 Dynamics Within the Plant – Arbuscular Mycorrhizal Fungal Mutualism: Testing the Nature of Community Feedback

J.D. Bever, A. Pringle, P.A. Schultz

11.1 Summary
- Page 268

11.2 Introduction
- Page 268

11.3 Mutual Interdependence of Plant and Arbuscular Mycorrhizal Fungal Growth Rates Cause Feedback Dynamics
- Page 270

11.3.1 Positive Feedback
- Page 271

11.3.2 Negative Feedback
- Page 272

11.4 Identifying Positive Versus Negative Feedback: Complimentary Approaches
- Page 274
Section D: Multitrophic Interactions

12 Mycorrhizae-Herbivore Interactions: Population and Community Consequences 295
G.A. GEHRING, T.G. WHITHAM

12.1 Summary .. 295
12.2 Introduction ... 296
12.3 Effects of Aboveground Herbivory on Mycorrhizal Fungi .. 297
12.3.1 Population Level Responses 297
12.3.2 Community Level Responses 299
12.3.3 Carbon Limitation as a Mechanism of Herbivore Impacts on Mycorrhizae 301
12.3.4 Conditionality in Mycorrhizal Responses to Herbivory ... 302
12.4 Effects of Mycorrhizal Fungi on the Performance of Herbivores ... 305
12.4.1 Patterns of Interaction ... 305
12.4.2 Mechanisms of Mycorrhizal Impacts on Herbivores 307
12.4.3 Not All Mycorrhizae Are Equal 308
12.5 Ecological and Evolutionary Implications 311
12.5.1 Herbivore Effects on Mycorrhizae 311
12.5.2 Mycorrhizae Effects on Herbivores 312
12.5.3 Combined Effects ... 314
12.6 Suggestions for Future Research 315
References ... 316

13 Actions and Interactions of Soil Invertebrates and Arbuscular Mycorrhizal Fungi in Affecting the Structure of Plant Communities ... 321
A.C. Gange, V.K. Brown

13.1 Summary ... 321
13.2 Introduction .. 322
13.3 Soil Invertebrate Groups ... 323
13.3.1 Earthworms .. 324
13.3.2 Nematodes .. 325
13.3.3 Mites ... 327
13.3.4 Insects ... 328
13.3.5 Other Invertebrates ... 333
13.4 Field Studies ... 333
13.5 Conclusions ... 340
References ... 341

14 Interactions Between Ecto-mycorrhizal Fungi and Saprotrophic Fungi ... 345
J.R. Leake, D.P. Donnelly, L. Boddy

14.1 Summary ... 346
14.2 Introduction .. 346
14.2.1 The Importance of Ecto-mycorrhizal and Saprotrophic Fungi in Forest Soils ... 347
14.2.2 Structural and Functional Similarities Between Mycelia of Saprotrophic and Ecto-mycorrhizal Fungi 348
14.3 Competition for Nutrients Between Ecto-mycorrhizal and Saprotrophic Fungi ... 353

References ... 353
14.3.1 Evidence of Saprotrophic Nutrient Mobilising Activities of Ecto-mycorrhizal Fungi ... 354
14.3.2 The Effect of Short-Circuiting of the N and P Cycles by Ecto-mycorrhizal Fungi on the Activities of Saprotrophic Fungi ... 356
14.4 Interactions Between Ecto-mycorrhizal and Saprotrophic Fungi Observed in Microcosms Containing Natural Soil ... 359
14.4.1 Transfers of P Between Interacting Mycelia of Ecto-mycorrhizal and Saprotrophic Fungi ... 359
14.4.2 The Effect of Interaction with Saprotrophic Fungi on Growth and Carbon Allocation in Ecto-mycorrhizal Mycelium ... 360
14.4.3 The Effect of Interaction with Ecto-mycorrhizal Mycelium on the Growth and Morphology of Mycelial Cords of the Saprotrophic Fungus Phanerochaete velutina ... 364
14.5 Conclusions ... 366
References ... 367

Section E: Host Specificity and Co-evolution

15 Mycorrhizal Specificity and Function in Myco-heterotrophic Plants ... 375
D.L. Taylor, T.D. Bruns, J.R. Leake, D.J. Read
15.1 Summary ... 375
15.2 Introduction ... 376
15.3 Evidence for Specificity in Myco-heterotrophs ... 377
15.3.1 Overview of Specificity in the Orchidaceae ... 378
15.3.2 Overview of Specificity in the Monotropoideae ... 393
15.4 Influences on Specificity ... 395
15.4.1 Local Distribution of Fungi ... 395
15.4.2 Habitat and Genetic Influences on Specificity ... 396
15.4.3 Ontogenetic Influences on Specificity ... 397
15.5 Evolution of Specificity ... 399
15.6 Fungal Trophic Niches and Mycorrhizal Carbon Dynamics ... 399
15.7 Conclusions and Future Goals ... 405
References ... 407
16 Specificity in the Arbuscular Mycorrhizal Symbiosis

I.R. Sanders

16.1 Summary

16.2 Introduction

16.3 Definitions of Specificity

16.4 Why Is Specificity in the Mycorrhizal Symbiosis Ecologically Interesting?

16.5 Theoretical Considerations on the Evolution of Specificity in Mutualistic Symbioses

16.6 Why Do We Not Already Know Whether Specificity Exists?

16.7 Evidence Supporting a Lack of Specificity

16.7.1 Arbuscular Mycorrhizal Fungi Have a Broad Host Range

16.7.2 A Systematic Perspective

16.7.3 Repeatable Patterns of Arbuscular Mycorrhizal Fungal Community Structure

16.7.4 Physiological Evidence

16.8 Evidence Supporting Specificity

16.8.1 Arbuscular Mycorrhizal Fungal Effects on Plant Fitness

16.8.2 Plant Species Effects on Fungal Fitness

16.9 What Information Is Missing and Which Experiments Are Needed?

16.9.1 Arbuscular Mycorrhizal Fungal Benefit from Specific Hosts

16.9.2 Reciprocal Benefit Between Plant Species and Fungal Species

16.9.3 A Genetic Basis for Specificity in Plants

16.9.4 A Genetic Basis for Specificity in Arbuscular Mycorrhizal Fungi

16.9.5 The Importance of the Hyphal Network for Understanding Specificity

16.10 Conclusions

References

Section F: Conclusions

17 Mycorrhizal Ecology: Synthesis and Perspectives

M.G.A. van der Heijden, I.R. Sanders

17.1 Introduction

17.2 Ecophysiology, Ecosystem Effects and Global Change
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.3</td>
<td>Biodiversity, Plant and Fungal Communities</td>
<td>446</td>
</tr>
<tr>
<td>17.4</td>
<td>Multitrophic Interactions</td>
<td>449</td>
</tr>
<tr>
<td>17.5</td>
<td>Host Specificity and Co-evolution</td>
<td>450</td>
</tr>
<tr>
<td>17.6</td>
<td>Conclusions</td>
<td>452</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>454</td>
</tr>
</tbody>
</table>

Subject Index ... 457

Taxonomic Index .. 465
Mycorrhizal Ecology
van der Heijden, M.G.A.; Sanders, I.R. (Eds.)
2003, XXIV, 471 p., Softcover
ISBN: 978-3-540-00204-8