Contents

0 **Introduction: What is This Book About** 1
 0.1 New Life of an Old Theory 1
 0.2 Plan of the Book .. 2
 0.3 What You Will Not Find in this Book 4

1 **Constellations, Coverings, and Maps** 7
 1.1 Constellations ... 7
 1.2 Ramified Coverings of the Sphere 13
 1.2.1 First Definitions 13
 1.2.2 Coverings and Fundamental Groups 15
 1.2.3 Ramified Coverings of the Sphere and Constellations 18
 1.2.4 Surfaces .. 22
 1.3 Maps .. 26
 1.3.1 Graphs Versus Maps 26
 1.3.2 Maps: Topological Definition 28
 1.3.3 Maps: Permutational Model 33
 1.4 Cartographic Groups 39
 1.5 Hypermaps .. 43
 1.5.1 Hypermaps and Bipartite Maps 43
 1.5.2 Trees .. 45
 1.5.3 Appendix: Finite Linear Groups 49
 1.5.4 Canonical Triangulation 50
 1.6 More Than Three Permutations 55
 1.6.1 Preimages of a Star or of a Polygon 56
 1.6.2 Cacti .. 57
 1.6.3 Preimages of a Jordan Curve 61
 1.7 Further Discussion 63
 1.7.1 Coverings of Surfaces of Higher Genera 63
 1.7.2 Ritt’s Theorem 65
 1.7.3 Symmetric and Regular Constellations 68
 1.8 Review of Riemann Surfaces 70
Contents

2 Dessins d’Enfants

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction: The Belyi Theorem</td>
<td>79</td>
</tr>
<tr>
<td>2.2</td>
<td>Plane Trees and Shabat Polynomials</td>
<td>80</td>
</tr>
<tr>
<td>2.2.1</td>
<td>General Theory Applied to Trees</td>
<td>80</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Simple Examples</td>
<td>88</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Further Discussion</td>
<td>94</td>
</tr>
<tr>
<td>2.2.4</td>
<td>More Advanced Examples</td>
<td>101</td>
</tr>
<tr>
<td>2.3</td>
<td>Belyi Functions and Belyi Pairs</td>
<td>109</td>
</tr>
<tr>
<td>2.4</td>
<td>Galois Action and Its Combinatorial Invariants</td>
<td>115</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Preliminaries</td>
<td>115</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Galois Invariants</td>
<td>118</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Two Theorems on Trees</td>
<td>123</td>
</tr>
<tr>
<td>2.5</td>
<td>Several Facets of Belyi Functions</td>
<td>126</td>
</tr>
<tr>
<td>2.5.1</td>
<td>A Bound of Davenport–Stothers–Zannier</td>
<td>126</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Jacobi Polynomials</td>
<td>131</td>
</tr>
<tr>
<td>2.5.3</td>
<td>Fermat Curve</td>
<td>135</td>
</tr>
<tr>
<td>2.5.4</td>
<td>The abc Conjecture</td>
<td>137</td>
</tr>
<tr>
<td>2.5.5</td>
<td>Julia Sets</td>
<td>139</td>
</tr>
<tr>
<td>2.5.6</td>
<td>Pell Equation for Polynomials</td>
<td>142</td>
</tr>
</tbody>
</table>

2.6 Proof of the Belyi Theorem

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6.1</td>
<td>The “Only If” Part of the Belyi Theorem</td>
<td>146</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Comments to the Proof of the “Only If” Part</td>
<td>147</td>
</tr>
<tr>
<td>2.6.3</td>
<td>The “If”, or the “Obvious” Part of the Belyi Theorem</td>
<td>150</td>
</tr>
</tbody>
</table>

3 Introduction to the Matrix Integrals Method

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Model Problem: One-Face Maps</td>
<td>155</td>
</tr>
<tr>
<td>3.2</td>
<td>Gaussian Integrals</td>
<td>160</td>
</tr>
<tr>
<td>3.2.1</td>
<td>The Gaussian Measure on the Line</td>
<td>160</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Gaussian Measures in \mathbb{R}^k</td>
<td>162</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Integrals of Polynomials and the Wick Formula</td>
<td>163</td>
</tr>
<tr>
<td>3.2.4</td>
<td>A Gaussian Measure on the Space of Hermitian Matrices</td>
<td>164</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Matrix Integrals and Polygon Gluings</td>
<td>167</td>
</tr>
<tr>
<td>3.2.6</td>
<td>Computing Gaussian Integrals. Unitary Invariance</td>
<td>171</td>
</tr>
<tr>
<td>3.2.7</td>
<td>Computation of the Integral for One Face Gluings</td>
<td>176</td>
</tr>
<tr>
<td>3.3</td>
<td>Matrix Integrals for Multi-Faced Maps</td>
<td>179</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Feynman Diagrams</td>
<td>179</td>
</tr>
<tr>
<td>3.3.2</td>
<td>The Matrix Integral for an Arbitrary Gluing</td>
<td>180</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Getting Rid of Disconnected Graphs</td>
<td>183</td>
</tr>
<tr>
<td>3.4</td>
<td>Enumeration of Colored Graphs</td>
<td>185</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Two-Matrix Integrals and the Ising Model</td>
<td>185</td>
</tr>
<tr>
<td>3.4.2</td>
<td>The Gauss Problem</td>
<td>188</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Meanders</td>
<td>190</td>
</tr>
<tr>
<td>3.4.4</td>
<td>On Enumeration of Meanders</td>
<td>191</td>
</tr>
<tr>
<td>3.5</td>
<td>Computation of Matrix Integrals</td>
<td>192</td>
</tr>
</tbody>
</table>
3.5.1 Example: Computing the Volume of the Unitary Group 192
3.5.2 Generalized Hermite Polynomials 195
3.5.3 Planar Approximations 197

3.6 Korteweg–de Vries (KdV) Hierarchy
for the Universal One-Matrix Model 199
3.6.1 Singular Behavior of Generating Functions 200
3.6.2 The Operator of Multiplication by λ
 in the Double Scaling Limit 202
3.6.3 The One-Matrix Model and the KdV Hierarchy 204
3.6.4 Constructing Solutions to the KdV Hierarchy
 from the Sato Grassmannian 206

3.7 Physical Interpretation 210
3.7.1 Mathematical Relations Between Physical Models 211
3.7.2 Feynman Path Integrals and String Theory 211
3.7.3 Quantum Field Theory Models 213
3.7.4 Other Models .. 214

3.8 Appendix ... 215
3.8.1 Generating Functions 215
3.8.2 Connected and Disconnected Objects 217
3.8.3 Logarithm of a Power Series and Wick’s Formula 219

4 Geometry of Moduli Spaces of Complex Curves 223
4.1 Generalities on Nodal Curves and Orbifolds 223
4.1.1 Differentials and Nodal Curves 223
4.1.2 Quadratic Differentials 226
4.1.3 Orbifolds ... 227
4.2 Moduli Spaces of Complex Structures 232
4.3 The Deligne–Mumford Compactification 234
4.4 Combinatorial Models of the Moduli Spaces of Curves ... 237
4.5 Orbifold Euler Characteristic of the Moduli Spaces 243
4.6 Intersection Indices on Moduli Spaces
 and the String and Dilaton Equations 249
4.7 KdV Hierarchy and Witten’s Conjecture 256
4.8 The Kontsevich Model 257
4.9 A Sketch of Kontsevich’s Proof of Witten’s Conjecture ... 263
 4.9.1 The Generating Function for the Kontsevich Model ... 263
 4.9.2 The Kontsevich Model and Intersection Theory 264
 4.9.3 The Kontsevich Model and the KdV Equation 266

5 Meromorphic Functions and Embedded Graphs 269
5.1 The Lyashko–Looijenga Mapping
 and Rigid Classification of Generic Polynomials 270
 5.1.1 The Lyashko–Looijenga Mapping 270
 5.1.2 Construction of the LL Mapping
 on the Space of Generic Polynomials 271
5.1.3 Proof of the Lyashko–Looijenga Theorem 273
5.2 Rigid Classification of Nongeneric Polynomials and the Geometry of the Discriminant 277
5.2.1 The Discriminant in the Space of Polynomials and Its Stratification 277
5.2.2 Statement of the Enumeration Theorem 279
5.2.3 Primitive Strata 280
5.2.4 Proof of the Enumeration Theorem 282
5.3 Rigid Classification of Generic Meromorphic Functions and Geometry of Moduli Spaces of Curves 288
5.3.1 Statement of the Enumeration Theorem 288
5.3.2 Calculations: Genus 0 and Genus 1 289
5.3.3 Cones and Their Segre Classes 292
5.3.4 Cones of Principal Parts 294
5.3.5 Hurwitz Spaces 297
5.3.6 Completed Hurwitz Spaces and Stable Mappings 299
5.3.7 Extending the LL Mapping to Completed Hurwitz Spaces 300
5.3.8 Computing the Top Segre Class; End of the Proof 302
5.4 The Braid Group Action 304
5.4.1 Braid Groups 304
5.4.2 Braid Group Action on Cacti: Generalities 309
5.4.3 Experimental Study 312
5.4.4 Primitive and Imprimitive Monodromy Groups 318
5.4.5 Perspectives 325
5.5 Megamaps 327
5.5.1 Hurwitz Spaces of Coverings with Four Ramification Points 328
5.5.2 Representation of \mathcal{H} as a Dessin d’Enfant 329
5.5.3 Examples 331
6 Algebraic Structures Associated with Embedded Graphs 337
6.1 The Bialgebra of Chord Diagrams 337
6.1.1 Chord Diagrams and Arc Diagrams 337
6.1.2 The 4-Term Relation 339
6.1.3 Multiplying Chord Diagrams 342
6.1.4 A Bialgebra Structure 343
6.1.5 Structure Theorem for the Bialgebra \mathcal{M} 346
6.1.6 Primitive Elements of the Bialgebra of Chord Diagrams 347
6.2 Knot Invariants and Origins of Chord Diagrams 350
6.2.1 Knot Invariants and their Extension to Singular Knots 350
6.2.2 Invariants of Finite Order 353
6.2.3 Deducing 1-Term and 4-Term Relations for Invariants 355
6.2.4 Chord Diagrams of Singular Links 357
6.3 Weight Systems .. 359
 6.3.1 A Bialgebra Structure on the Module V
 of Vassiliev Knot Invariants 359
 6.3.2 Renormalization ... 360
 6.3.3 Weight Systems .. 362
 6.3.4 Vassiliev Knot Invariants and Other Knot Invariants . 364
6.4 Constructing Weight Systems via Intersection Graphs 367
 6.4.1 The Intersection Graph of a Chord Diagram 367
 6.4.2 Tutte Functions for Graphs 368
 6.4.3 The 4-Bialgebra of Graphs 369
 6.4.4 The Bialgebra of Weighted Graphs 370
 6.4.5 Constructing Vassiliev Invariants from 4-Invariants .. 383
6.5 Constructing Weight Systems via Lie Algebras 384
 6.5.1 Free Associative Algebras 385
 6.5.2 Universal Enveloping Algebras of Lie Algebras 387
 6.5.3 Examples .. 390
6.6 Some Other Algebras of Embedded Graphs 393
 6.6.1 Circle Diagrams and Open Diagrams 393
 6.6.2 The Algebra of 3-Graphs 395
 6.6.3 The Temperley–Lieb Algebra 395

A Applications of the Representation Theory
of Finite Groups (by Don Zagier) 399
A.1 Representation Theory of Finite Groups 399
 A.1.1 Irreducible Representations and Characters 399
 A.1.2 Examples ... 403
 A.1.3 Frobenius’s Formula 406
A.2 Applications .. 408
 A.2.1 Representations of S_n and Canonical Polynomials
 Associated to Partitions 409
 A.2.2 Examples ... 415
 A.2.3 First Application: Enumeration of Polygon Gluings . 416
 A.2.4 Second Application: the Goulden–Jackson Formula 418
 A.2.5 Third Application: “Mirror Symmetry”
 in Dimension One .. 423

References ... 429

Index ... 445
Graphs on Surfaces and Their Applications
Lando, S.K.; Zvonkin, A.K. - Gamkrelidze, R.V.; Vassiliev, V.A. (Eds.)
2004, XV, 455 p. 3 illus., Hardcover
ISBN: 978-3-540-00203-1