Table of Contents

1. **Introduction** ... 1

2. **Quantal Phase Factors for Adiabatic Changes** 5
 2.1 Introduction ... 5
 2.2 Adiabatic Approximation 10
 2.3 Berry’s Adiabatic Phase 14
 2.4 Topological Phases and the Aharonov–Bohm Effect 22
 Problems .. 29

3. **Spinning Quantum System in an External Magnetic Field** 31
 3.1 Introduction ... 31
 3.2 The Parameterization of the Basis Vectors 31
 3.3 Mead–Berry Connection and Berry Phase
 for Adiabatic Evolutions – Magnetic Monopole Potentials... 36
 3.4 The Exact Solution of the Schrödinger Equation 42
 3.5 Dynamical and Geometrical Phase Factors
 for Non-Adiabatic Evolution 48
 Problems .. 52

4. **Quantal Phases for General Cyclic Evolution** 53
 4.1 Introduction ... 53
 4.2 Aharonov–Anandan Phase 53
 4.3 Exact Cyclic Evolution for Periodic Hamiltonians 60
 Problems .. 64

5. **Fiber Bundles and Gauge Theories** 65
 5.1 Introduction ... 65
 5.2 From Quantal Phases to Fiber Bundles 65
 5.3 An Elementary Introduction to Fiber Bundles 67
 5.4 Geometry of Principal Bundles and the Concept of Holonomy 76
 5.5 Gauge Theories .. 87
 5.6 Mathematical Foundations of Gauge Theories and Geometry
 of Vector Bundles .. 95
 Problems .. 102
6. **Mathematical Structure of the Geometric Phase I:**
 - **The Abelian Phase** ... 107
 - **6.1 Introduction** ... 107
 - **6.2 Holonomy Interpretations of the Geometric Phase** 107
 - **6.3 Classification of $U(1)$ Principal Bundles and the Relation Between the Berry–Simon and Aharonov–Anandan Interpretations of the Adiabatic Phase** 113
 - **6.4 Holonomy Interpretation of the Non-Adiabatic Phase Using a Bundle over the Parameter Space** 118
 - **6.5 Spinning Quantum System and Topological Aspects of the Geometric Phase** ... 123
 - **Problems** .. 126

7. **Mathematical Structure of the Geometric Phase II:**
 - **The Non-Abelian Phase** .. 129
 - **7.1 Introduction** .. 129
 - **7.2 The Non-Abelian Adiabatic Phase** 129
 - **7.3 The Non-Abelian Geometric Phase** 136
 - **7.4 Holonomy Interpretations of the Non-Abelian Phase** 139
 - **7.5 Classification of $U(N)$ Principal Bundles and the Relation Between the Berry–Simon and Aharonov–Anandan Interpretations of Non-Abelian Phase** 141
 - **Problems** .. 145

8. **A Quantum Physical System in a Quantum Environment – The Gauge Theory of Molecular Physics** 147
 - **8.1 Introduction** .. 147
 - **8.2 The Hamiltonian of Molecular Systems** 148
 - **8.3 The Born–Oppenheimer Method** 157
 - **8.4 The Gauge Theory of Molecular Physics** 166
 - **8.5 The Electronic States of Diatomic Molecule** 174
 - **8.6 The Monopole of the Diatomic Molecule** 176
 - **Problems** .. 191

9. **Crossing of Potential Energy Surfaces and the Molecular Aharonov–Bohm Effect** 195
 - **9.1 Introduction** .. 195
 - **9.2 Crossing of Potential Energy Surfaces** 196
 - **9.3 Conical Intersections and Sign-Change of Wave Functions** ... 198
 - **9.4 Conical Intersections in Jahn–Teller Systems** 209
 - **9.5 Symmetry of the Ground State in Jahn–Teller Systems** 213
 - **9.6 Geometric Phase in Two Kramers Doublet Systems** 219
 - **9.7 Adiabatic–Diabatic Transformation** 222
10. Experimental Detection of Geometric Phases I:
Quantum Systems in Classical Environments 225
 10.1 Introduction ... 225
 10.2 The Spin Berry Phase Controlled by Magnetic Fields 225
 10.2.1 Spins in Magnetic Fields: The Laboratory Frame 225
 10.2.2 Spins in Magnetic Fields: The Rotating Frame 231
 10.2.3 Adiabatic Reorientation in Zero Field 237
 10.3 Observation of the Aharonov–Anandan Phase
Through the Cyclic Evolution of Quantum States 248
Problems .. 252

11. Experimental Detection of Geometric Phases II:
Quantum Systems in Quantum Environments 255
 11.1 Introduction ... 255
 11.2 Internal Rotors Coupled to External Rotors 256
 11.3 Electronic–Rotational Coupling 259
 11.4 Vibronic Problems in Jahn–Teller Systems 260
 11.4.1 Transition Metal Ions in Crystals 261
 11.4.2 Hydrocarbon Radicals 264
 11.4.3 Alkali Metal Trimers 265
 11.5 The Geometric Phase in Chemical Reactions 270
Problems .. 277

12. Geometric Phase in Condensed Matter I: Bloch Bands ... 277
 12.1 Introduction ... 277
 12.2 Bloch Theory .. 278
 12.2.1 One-Dimensional Case 278
 12.2.2 Three-Dimensional Case 280
 12.2.3 Band Structure Calculation 281
 12.3 Semiclassical Dynamics 283
 12.3.1 Equations of Motion 283
 12.3.2 Symmetry Analysis 285
 12.3.3 Derivation of the Semiclassical Formulas 286
 12.3.4 Time-Dependent Bands 287
 12.4 Applications of Semiclassical Dynamics 288
 12.4.1 Uniform DC Electric Field 288
 12.4.2 Uniform and Constant Magnetic Field 289
 12.4.3 Perpendicular Electric and Magnetic Fields 290
 12.4.4 Transport 290
 12.5 Wannier Functions 292
 12.5.1 General Properties 292
 12.5.2 Localization Properties 293
 12.6 Some Issues on Band Insulators 295
 12.6.1 Quantized Adiabatic Particle Transport 295
 12.6.2 Polarization 297
Problems .. 299
Table of Contents

13. Geometric Phase in Condensed Matter II:

The Quantum Hall Effect .. 301
13.1 Introduction ... 301
13.2 Basics of the Quantum Hall Effect 302
 13.2.1 The Hall Effect 302
 13.2.2 The Quantum Hall Effect 302
 13.2.3 The Ideal Model 304
 13.2.4 Corrections to Quantization 305
13.3 Magnetic Bands in Periodic Potentials 307
 13.3.1 Single-Band Approximation in a Weak Magnetic Field 307
 13.3.2 Harper’s Equation and Hofstadter’s Butterfly 309
 13.3.3 Magnetic Translations 311
 13.3.4 Quantized Hall Conductivity 314
 13.3.5 Evaluation of the Chern Number 316
 13.3.6 Semiclassical Dynamics and Quantization 318
 13.3.7 Structure of Magnetic Bands and Hyperorbit Levels ... 321
 13.3.8 Hierarchical Structure of the Butterfly 325
 13.3.9 Quantization of Hyperorbits and Rule of Band Splitting 327
13.4 Quantization of Hall Conductance in Disordered Systems ... 329
 13.4.1 Spectrum and Wave Functions 329
 13.4.2 Perturbation and Scattering Theory 331
 13.4.3 Laughlin’s Gauge Argument 332
 13.4.4 Hall Conductance as a Topological Invariant 333

14. Geometric Phase in Condensed Matter III:

Many-Body Systems ... 337
14.1 Introduction ... 337
14.2 Fractional Quantum Hall Systems 337
 14.2.1 Laughlin Wave Function 337
 14.2.2 Fractional Charged Excitations 340
 14.2.3 Fractional Statistics 341
 14.2.4 Degeneracy and Fractional Quantization 344
14.3 Spin-Wave Dynamics in Itinerant Magnets 346
 14.3.1 General Formulation 346
 14.3.2 Tight-Binding Limit and Beyond 348
 14.3.3 Spin Wave Spectrum 350
14.4 Geometric Phase in Doubly-Degenerate Electronic Bands 353

A. An Elementary Introduction to Manifolds and Lie Groups 361
A.1 Introduction ... 361
A.2 Differentiable Manifolds 371
A.3 Lie Groups ... 388
B. A Brief Review of Point Groups of Molecules
 with Application to Jahn–Teller Systems 407

References .. 429

Index .. 437
The Geometric Phase in Quantum Systems
Foundations, Mathematical Concepts, and Applications
in Molecular and Condensed Matter Physics
Bohm, A.; Mostafazadeh, A.; Koizumi, H.; Niu, Q.;
Zwanziger, J.
2003, XXI, 427 p., Hardcover
ISBN: 978-3-540-00031-0