Contents

1 Supply Chain Management and Structural Dynamics Control
- 1.1 Structural Dynamics and Supply Chains .. 1
- 1.2 Basics of Supply Chain Management ... 7
- 1.3 Technical Description of Supply Chain Structural Dynamics 10
- 1.4 General Formal Statement of the Supply Chain Structure Dynamics Control Problem .. 13
- 1.5 Generalized Dynamic Model of Supply Chain Structural Dynamics Control Processes (M Model) .. 15
- References ... 16

2 Supply Chain Risk Management: Bullwhip Effect and Ripple Effect
- 2.1 Uncertainty and Risks .. 19
 - 2.1.1 Sources of Uncertainty .. 20
 - 2.1.2 Uncertainty and Complexity .. 22
- 2.2 Risk Management in the Supply Chain .. 25
 - 2.2.1 General Framework of Risk Control 25
 - 2.2.2 Operational and Disruption Risks .. 28
- 2.3 Bullwhip Effect .. 31
- 2.4 Ripple Effect .. 34
 - 2.4.1 Definition .. 34
 - 2.4.2 Reasons for Ripple Effect ... 36
 - 2.4.3 Mitigation Strategies for Ripple Effect 37
 - 2.4.4 Information Technologies for Tackling the Ripple Effect 40
- References ... 40
Contents

3 Supply Chain Resilience: Modelling, Management, and Control

- 3.1 Terminological Framework: Redundancy, Robustness, Stability, Flexibility, Resilience ... 47
- 3.2 Frameworks for Supply Chain and Operations Disruption Management ... 53
- 3.3 State Dynamics Control ... 55
- 3.4 Control-Theoretic Supply Chain Resilience Framework ... 56
 - 3.4.1 Case 1: Stability ... 58
 - 3.4.2 Case 2: Robustness ... 59
 - 3.4.3 Case 3: Resilience ... 59
 - 3.4.4 Case 4: Viability ... 59
- 3.5 Supply Chain Resilience Analysis with the Help of Attainable Sets ... 63
- 3.6 Fuzzy-Theoretic Analysis of Supply Chain Structural Robustness with the Help of Genome Method ... 67
 - 3.6.1 Genome Method for Structural Robustness Analysis in the Supply Chain ... 67
 - 3.6.2 Supply Chain Structural Robustness Computation: Exact Method ... 70
 - 3.6.3 Computation of the Upper and Lower Boundaries for Supply Chain Structural Robustness ... 72
 - 3.6.4 Computation Example ... 75
 - 3.6.5 Advanced Analysis with Costs Considerations ... 75
- 3.7 Models and Algorithms of Supply Chain Reconfiguration ... 80
 - 3.7.1 Decision Making Framework for Resilience Supply Chains ... 80
 - 3.7.2 Algorithms of Supply Chain (Re)Planning Under Uncertainty ... 82

References ... 87

4 Principles and Methods of Model-Based Decision-Making in the Supply Chain ... 91

- 4.1 Basics of Model-Based Decision-Making in Supply Chain Management ... 91
 - 4.1.1 Problems, Systems, and Decision-Making ... 91
 - 4.1.2 Models and Modelling ... 93
 - 4.1.3 Model-Based Decision-Making ... 95
 - 4.1.4 Quantitative Models and Operations Research ... 98
- 4.2 Multi-disciplinary Nature of Quantitative Modelling Framework ... 100
- 4.3 Modelling Paradigms ... 105
 - 4.3.1 Mathematical Optimization ... 105
 - 4.3.2 Simulation ... 106
5 OR/MS Methods for Structural Dynamics in Supply Chain Risk Management

5.1 Literature Selection Principles .. 115
5.2 Mixed-Integer Programming ... 118
5.3 Stochastic Programming/Fuzzy and Robust Optimization 120
5.4 Pricing and Game Theory ... 121
5.5 Simulation .. 122
 5.5.1 System Dynamics .. 123
 5.5.2 Agent-Based Simulation .. 123
 5.5.3 Discrete-Event Simulation ... 123
 5.5.4 Graph-Theoretical Studies .. 125
 5.5.5 Optimization-Based Simulation 126
5.6 System Science and Control Theory 127
 5.6.1 Dynamic Feedback Production-Inventory Control 128
 5.6.2 Optimal Multi-stage Production Planning and Scheduling 131
5.7 Analysis and Observations ... 134
 5.7.1 Reasons for Supply Chain Risks 134
 5.7.2 Risk Mitigation and Recovery Measures 135
 5.7.3 Application of Quantitative Analysis Methods 140
 5.7.4 Critical Analysis and Future Research Needs 145
References ... 148

6 Hybrid Multi-objective Mathematical Optimization:
Optimal Control Model for Proactive Supply Chain

Recovery Planning ... 161
6.1 Problem Statement and Modelling Approach 161
 6.1.1 Management Problem Statement 161
 6.1.2 Modelling Approach ... 162
6.2 Mathematical Model .. 163
 6.2.1 Problem Description ... 163
 6.2.2 Linear Programming Model ... 164
 6.2.3 Optimal Control Model ... 164
6.3 Computational Procedure .. 168
 6.3.1 Model Coordination .. 168
 6.3.2 Linear Programming Model Solution and Complexity 169
 6.3.3 Optimal Control Problem Solution 170
6.4 Experiments for Distribution Network Structural Dynamics 174
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.1</td>
<td>Supply Chain Design Structural Dynamics</td>
<td>174</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Planning Results</td>
<td>177</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Sensitivity Analysis</td>
<td>179</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Distribution Network Re-design</td>
<td>181</td>
</tr>
<tr>
<td>6.5</td>
<td>Experiments for Manufacturing Supply Chain Structural Dynamics</td>
<td>187</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Supply Chain Design Structural Dynamics</td>
<td>187</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Planning Results for Initial Supply Chain Design</td>
<td>192</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Planning Results for the Re-designed Supply Chain</td>
<td>193</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Quantifying the Ripple Effect</td>
<td>194</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Impact of Recovery Speed</td>
<td>197</td>
</tr>
<tr>
<td>6.6</td>
<td>Managerial Insights</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>Control-Theoretic Models and Algorithms for Supply Chain Scheduling</td>
<td>203</td>
</tr>
<tr>
<td>7.1</td>
<td>Problem Statement</td>
<td>203</td>
</tr>
<tr>
<td>7.1.1</td>
<td>Coordinated Supply Chain Scheduling Problem</td>
<td>203</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Supply Chains Scheduling with Capacity Disruptions and Recovery</td>
<td>204</td>
</tr>
<tr>
<td>7.2</td>
<td>Modelling Approach</td>
<td>206</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Literature on Coordinated Supply Chain Scheduling</td>
<td>206</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Hybrid Optimal Control-Mathematical Programming Approach to Coordinated Supply Chain Scheduling</td>
<td>207</td>
</tr>
<tr>
<td>7.3</td>
<td>Formal Model</td>
<td>208</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Notations</td>
<td>209</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Dynamic Model for the Operation control Processes</td>
<td>210</td>
</tr>
<tr>
<td>7.3.3</td>
<td>Dynamic Model of Channel Control (Model M_k)</td>
<td>214</td>
</tr>
<tr>
<td>7.3.4</td>
<td>Dynamic Model of Resource Control (Model M_r)</td>
<td>216</td>
</tr>
<tr>
<td>7.3.5</td>
<td>Dynamic Model of Flow Control (Model M_f)</td>
<td>218</td>
</tr>
<tr>
<td>7.3.6</td>
<td>Formulation of the Scheduling Problem</td>
<td>221</td>
</tr>
<tr>
<td>7.3.7</td>
<td>Example</td>
<td>221</td>
</tr>
<tr>
<td>7.4</td>
<td>Modelling Capacity disruptions and Recovery</td>
<td>223</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Assumptions and Notations</td>
<td>223</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Mathematical Model M1</td>
<td>225</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Mathematical Model M2</td>
<td>227</td>
</tr>
<tr>
<td>7.4.4</td>
<td>Model Coordination</td>
<td>229</td>
</tr>
<tr>
<td>7.5</td>
<td>Computational Procedure</td>
<td>229</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Transformation of the Optimal Control Program to the Boundary Problem</td>
<td>229</td>
</tr>
</tbody>
</table>
7.5.2 Hamiltonians .. 231
7.5.3 Conjunctive System and Transversality
 Conditions ... 232
7.5.4 Computational Algorithm 233
7.6 Optimality and Complexity Analysis 237
 7.6.1 Optimality and Existence Analysis 237
 7.6.2 Analysis of the Algorithm Complexity 238
References .. 239

8 Simulation Applications to Structural Dynamics in Service
 and Manufacturing Supply Chain Risk Management 243
8.1 Simulation Model of Service Supply Chain Design
 with Facility Disruption Considerations 243
 8.1.1 Brief Overview 243
 8.1.2 Verbal Problem Description 244
 8.1.3 Problem Statement and Modelling Approach 245
 8.1.4 Data for Simulation 246
 8.1.5 Simulation Results 247
 8.1.6 Managerial Insights 250
8.2 Simulation Model of Supply Chain Planning with
 Production Capacity Disruption Considerations 253
 8.2.1 Brief Overview 253
 8.2.2 Verbal Problem Statement 253
 8.2.3 Problem Statement and Modelling Approach 254
 8.2.4 Data for Experiments 256
 8.2.5 Experimental Results 257
 8.2.6 Testing and Verification 259
 8.2.7 Managerial Insights 260
8.3 Single Versus Dual Sourcing Analysis with Disruption
 Considerations .. 261
 8.3.1 Brief Overview 261
 8.3.2 Problem Statement 261
 8.3.3 Modelling Approach 262
 8.3.4 Experiments 263
8.4 Managerial Insights 266
8.5 Simulation Application to Supply Chain Structural Dynamics
 Analysis .. 268
 8.5.1 Simulation Framework 269
 8.5.2 Application of Simulation Modelling to
 Supply Chain Structural Dynamics 270
References .. 272

9 Entropy-Based Supply Chain Structural Complexity Analysis 275
9.1 Supply Chain Structural Dynamics and Complexity 275
 9.1.1 Supply Chains as Complex Systems 275
 9.1.2 Problem Statement 277
9.2 Supply Chain Adaptation Potential .. 278
 9.2.1 Quantitative Estimation of Adaptation Potential:
 Basic Computation .. 279
 9.2.2 Quantitative Estimation of Adaptation Potential:
 Extension .. 281
9.3 Adaptation Potential-Based-Identification of Methods
 for Supply Chain Design 284
9.4 Practical Aspects of the Adaptation Potential Calculation 286
9.5 Estimation of Supply Chain Adaptation Potential Under
 Terms of Outsourcing 288
References ... 292

10 New Drivers for Supply Chain Structural Dynamics
 and Resilience: Sustainability, Industry 4.0, Self-Adaptation 293
 10.1 Case Studies .. 293
 10.1.1 Case Nissan: Resilient Supply Chain 293
 10.1.2 Toyota: Supply Chain Disruption Management 295
 10.1.3 Capacity Flexibility at Volkswagen 296
 10.1.4 Volkswagen and Prevent Group Legal Dispute:
 Impact on the Supply Chain 299
 10.1.5 Case Study ASOS: Building Resilient Supply
 Chains Using Back-Up Facilities 300
 10.2 Disruption Risks Management and Supply Chain
 Sustainability .. 300
 10.3 Structural Dynamics in the Framework of Industry 4.0 303
 10.3.1 Industry 4.0 as a New Driver for Supply Chain
 Structural Dynamics .. 303
 10.3.2 Vision of Adaptive Supply Chain Management
 Framework ... 304
References ... 311

Index ... 315
Structural Dynamics and Resilience in Supply Chain Risk Management
Ivanov, D.
2018, XXIV, 320 p. 110 illus., 33 illus. in color., Hardcover
ISBN: 978-3-319-69304-0