Contents

1 Introduction and Research Impact ... 1
 1.1 Low-Noise Amplifier Research Contextualization:
 A Transmitter and Receiver System 3
 1.1.1 Transmitter 4
 1.1.2 The Receiver and the Role of a Low-Noise
 Amplifier 5
 1.2 Significance of Active and Passive Devices for Low-Noise
 Amplifier Research .. 7
 1.3 Significance of Device Packaging at
 Millimeter-Wave Range 9
 1.4 Practical Research Focus: Applications of Millimeter-Wave
 Low-Noise Amplifiers .. 9
 1.5 Identifying Research Gaps: Fundamental Principles
 of Operation of Low-Noise Amplifiers 11
 1.5.1 Low-Noise Amplifier Topologies 11
 1.5.2 Gain of the Low-Noise Amplifier 14
 1.5.3 Noise in Low-Noise Amplifiers 14
 1.5.4 Power Consumption and Efficiency 14
 1.5.5 Reverse Isolation 15
 1.5.6 Impedance Matching 16
 1.5.7 Bandwidth and Gain Flatness 16
 1.5.8 LNA Sensitivity 17
 1.5.9 LNA Selectivity 17
 1.5.10 Low-Noise Amplifier Linearity 18
 1.5.11 The Role of Electronic Design Automation 18
 1.6 Research Questions: Low-Noise Amplifier for
 Millimeter-Wave Applications 19
 1.7 Contribution to the Body of Knowledge 20
1.8 Content Overview 20
1.8.1 Part I 21
1.8.2 Part II 22
References .. 23

Part I Research Contextualization: Dissecting the Low-Noise Amplifier—A Sum of Parts

2 Specification-Governed Telecommunication and High-Frequency-Electronics Aspects of Low-Noise Amplifier Research .. 29
2.1 Frequency and Wavelength 30
2.2 Frequency Spectrum and Transmission Bands 31
2.3 The Millimeter-Wave Frequency Range 34
 2.3.1 Millimeter-Wave Bandwidth Allocations 34
 2.3.2 Propagation of Millimeter Waves 36
2.4 Digital Modulation Schemes for Millimeter-Wave Applications 38
 2.4.1 On-Off Keying 39
 2.4.2 Phase Shift-Keying 39
 2.4.3 Frequency Shift-Keying 40
 2.4.4 Pulse-Amplitude Modulation 41
 2.4.5 Quadrature Amplitude Modulation 41
 2.4.6 Orthogonal Frequency-Division Multiplexing 42
2.5 Antennas for Millimeter-Waves 43
 2.5.1 General Antenna Theory 44
 2.5.2 Millimeter-Wave Antennas 45
2.6 High-Frequency Electronics: Practical Two-Port Modeling of Low-Noise Amplifiers 47
 2.6.1 Admittance Parameters 47
 2.6.2 S-Parameters 48
2.7 Practical Amplifier Gain Relationships and Stability 50
 2.7.1 Reflection Coefficients 50
 2.7.2 Gain Relationships 51
 2.7.3 Amplifier Stability 54
2.8 Impedance Matching 55
 2.8.1 Lumped Element Matching 55
 2.8.2 Transmission-Line Matching 57
 2.8.3 Matching and Constant Voltage Standing Wave Ratio 59
2.9 Biasing .. 59
2.10 Broadband Amplifier Techniques 60
2.11 Narrowband Amplifier Techniques 63
2.12 Noise in Amplifiers 64
 2.12.1 Noise Figure 64
4.3 Resistors .. 120
4.4 Capacitors 122
 4.4.1 Discrete Capacitors 123
 4.4.2 Integrated Capacitors 123
 4.4.3 Transmission-Line Capacitors 126
4.5 Inductors .. 127
 4.5.1 Discrete Inductors 128
 4.5.2 Integrated Active Inductors 129
 4.5.3 Bond Wires 130
 4.5.4 Ribbon Inductors 131
 4.5.5 Spiral Inductors 131
 4.5.6 Micro-Electro-Mechanical System Inductors 141
 4.5.7 Transmission-Line Inductors 142
 4.5.8 Other On-Chip Inductor Implementations 143
 4.5.9 RF Chokes 144
4.6 Transformers and Baluns 145
4.7 Concluding Remarks 147
References .. 147

5 General Low-Noise Amplifiers 151
 5.1 Research, Design and Development Considerations for
 Millimeter-Wave Applications 152
 5.2 Single-Ended Low-Noise Amplifiers 153
 5.2.1 Popular Topologies 154
 5.2.2 The Cascode Topology 157
 5.2.3 Modeling and Equations of the Cascode
 Configuration 158
 5.2.4 Two-Port Parameters 168
 5.2.5 Single-Ended Topologies for Millimeter-Wave
 Application 169
 5.3 Differential Low-Noise Amplifiers 169
 5.4 Concluding Remarks 172
References .. 172

6 Broadband Low-Noise Amplifiers 175
 6.1 Popular Broadband Topologies 176
 6.1.1 Traditional Configurations: Common-Source and
 Cascode Low-Noise Amplifiers 176
 6.1.2 Feedback Configurations 178
 6.1.3 Cascaded Low-Noise Amplifiers 178
 6.2 Modeling and Equations 180
 6.2.1 Cascode Low-Noise Amplifiers 180
 6.2.2 Resistive Feedback Configuration 182
 6.2.3 LC-Ladder Low-Noise Amplifiers with Capacitive
 Shunt-Shunt Feedback 184
6.3 Two Port Parameters 188
6.4 Wideband Matching Techniques 188
6.5 Multi-stage Topologies for Millimeter-Wave Applications 192
6.6 Distributed and Inductive-Peaking Techniques for Bandwidth Expansion 193
6.7 Other Broadband Techniques 198
6.8 Concluding Remarks 201
References .. 202

Part II Research Execution: State-of-the-Art Low-Noise Amplifiers, Techniques for Optimization of Low-Noise Amplifier Parts

7 State-of-the-Art Low-Noise Amplifiers in the Millimeter-Wave Regime .. 207
7.1 State-of-the-Art Cascode Configurations 208
7.1.1 A 60-GHz BiCMOS Low-Noise Amplifier Deploying a Conductive Path to Ground 208
7.1.2 A 77-GHz BiCMOS Low-Power Low-Noise Amplifier 209
7.1.3 A 33–34 GHz Narrowband Low-Noise Amplifier with Low Noise Figure 211
7.1.4 A 70–100 GHz Wideband Low-Noise Amplifier with Split Inductor Output Matching 212
7.1.5 Triple and Quadruple CMOS Cascode Low-Noise Amplifiers ... 213
7.1.6 A 60-GHz Two-Stage Cascode CMOS Low-Noise Amplifier with Middle Inductors 215
7.1.7 Other Configurations 215
7.1.8 Performance Analysis 217
7.1.9 Weaknesses of the State-of-the-Art Configurations 217
7.2 State-of-the-Art Differential Configurations 217
7.2.1 120-GHz BiCMOS Two-Stage Differential Cascode Low-Noise Amplifier 218
7.2.2 120-GHz CMOS Transformer-Matched Four-Stage Common Source Low-Noise Amplifier 219
7.2.3 Load-Isolated Transformer-Feedback CMOS Low-Noise Amplifier at 60 GHz 220
7.2.4 Performance Analysis 221
7.2.5 Weaknesses of the State-of-the-Art Configurations 221
7.3 Complex Wideband State-of-the-Art Configurations 223
7.3.1 A Linear Low-Power-Consumption BiCMOS Two-Stage Transformer-Coupled Cascode-Cascade Low-Noise Amplifier 223
7.3.2 Three-Stage Low-Power CMOS Low-Noise Amplifier with High $G_m \times R_{out}$ Transconductance Cells ... 224
7.3.3 W-Band Low-Noise Amplifier for Millimeter-Wave Imaging Applications 225
7.3.4 71–86-GHz BiCMOS Low-Noise Amplifier as Part of a Bidirectional Power Amplifier/Low-Noise Amplifier System ... 227
7.3.5 A 71-81 GHz CMOS Low-Noise Amplifier 228
7.3.6 An E-Band pHEMT GaAs Low-Noise Amplifier 229
7.3.7 A Q/V-Band pHEMT GaAs Low-Noise Amplifier with Noise Figure Less Than 2 dB 231
7.3.8 A 68–110-GHz InP HEMT Common-Gate Low-Noise Amplifier ... 232
7.3.9 A 30-GHz-Wide Low-Noise Amplifier Using a Pole-Converging Interstage Bandwidth Extension Technique ... 233
7.3.10 A 190-GHz BiCMOS Low-Noise Amplifier for Ultra-Large Bandwidth Applications 237
7.3.11 Other Configurations ... 238
7.3.12 Performance Analysis ... 238
7.3.13 Weaknesses of the State-of-the-Art Configuration 240
7.4 State-of-the-Art Configurations Reaching Beyond 200 GHz ... 240
7.4.1 A 245 GHz Narrowband BiCMOS Low-Noise Amplifier ... 240
7.4.2 160–270 GHz InP HEMT Low-Noise Amplifiers 242
7.4.3 A Common-Source and Cascode mHEMT Low-Noise Amplifier for Applications at 325 GHz 244
7.4.4 A 670 GHz InP HEMT Low-Noise Amplifier 245
7.4.5 Performance Analysis ... 246
7.4.6 Weaknesses of the State-of-the-Art Configuration 247
7.5 Low-Noise Amplifier Optimization ... 247
7.6 Concluding Remarks ... 249
References ... 250

8 Advanced Low-Noise Amplifier Optimization Topics 253
8.1 General Considerations Leading to Optimum Low-Noise Amplifier Designs ... 254
8.1.1 Component and Interstage Connection Losses 254
8.1.2 Uncertainty ... 255
8.1.3 Feasibility of Component Values 255
8.1.4 Influence of the Frequency and the Wavelength 256
8.1.5 Coupling ... 256
8.1.6 Design Rule Checks and Technology Considerations ... 258
8.1.7 Layout Dependency 258
8.1.8 Bond-Pad Considerations 259
8.1.9 Bond-Wire Considerations 260
8.1.10 Package Leads Considerations 260
8.2 Optimization Through Improved Packaging 262
 8.2.1 Wafer-Level Chip-Scale Packaging (Microbumping) ... 262
 8.2.2 IC/Package Co-design 263
 8.2.3 System on Chip 263
 8.2.4 System on Package and System in Package 264
 8.2.5 Embedded Wafer Level Ball Grid Array Packaging ... 266
8.3 Advanced Fabrication Techniques 267
8.4 Minimizing Passive Parasitic Effects 271
 8.4.1 Passive Components on Chip 271
 8.4.2 Embedded Passive Components 278
 8.4.3 LNA/Antenna Co-design with Integrated Antennas and Antennas on Package 281
 8.4.4 Switches and Tunability 282
8.5 Concluding Remarks 284
References .. 284

9 Low-Noise Amplifier Optimization via Electronic Design Automation ... 287
9.1 Current State of Electronic Design Automation 288
9.2 Optimum Design of Passive Components 291
 9.2.1 Performance Optimization by Synthesizing Optimum Spiral Inductors and Transformers 291
 9.2.2 Offline Optimization of RF Inductors by Introducing Optimal Performance Trade-Offs 301
 9.2.3 Optimum Design of Bond Wires 303
 9.2.4 Streamlined Design of Transmission-Line Passives ... 305
9.3 Optimum Design of Matching Networks 307
9.4 Low-Noise Amplifier Electronic Design Automation Techniques ... 312
 9.4.1 Optimizing Low-Noise Amplifiers by Optimizing S-Parameters with and Without the Backtracking Search .. 312
 9.4.2 Simulation-Based Evolutionary LNA Design Optimization ... 316
 9.4.3 Offline Optimization of LNAs 317
 9.4.4 In-House Techniques for Streamlining and Optimization of Low-Noise Amplifier Designs 318
 9.4.5 CMOS Low-Noise Amplifier Optimization Based on Regions of Operation 319
 9.4.6 Complete Low-Noise Amplifier Integration 323
9.5 Receiver Design Using Computational Intelligence 324
 9.5.1 Choosing Receiver Topology 326
 9.5.2 Receiver Chain Parameter Distribution 326
9.6 Concluding Remarks 327
References 328

10 Evaluation of the Hypothesis and Research Questions, Final Remarks and Future Research 329
10.1 Evaluation of the Hypothesis and Research Questions 329
 10.1.1 Research Question 1 329
 10.1.2 Research Question 2 329
 10.1.3 Research Question 3 330
 10.1.4 Research Question 4 330
 10.1.5 The Hypothesis 330
10.2 Remaining Research Gaps and Opportunities for Enhancement 331
10.3 Future Directions 332
10.4 Concluding Proposal: Streamlined Flow for Low-Noise Amplifier Design Deploying Custom Electronic Design Automation 332
Reference 334
Millimeter-Wave Low Noise Amplifiers
Božanić, M.; Sinha, S.
2018, XVIII, 334 p. 264 illus., 46 illus. in color., Hardcover
ISBN: 978-3-319-69019-3