Contents

1 Signal Quality Assessment in Physiological Monitoring: Requirements, Practices and Future Directions 1
 1.1 The Case for Signal Quality Assessment 2
 1.1.1 Continuous Physiological Monitoring 2
 1.1.2 Obstacles to Clinical Adoption 4
 1.1.3 Signal Quality Assessment 5
 1.2 Design Considerations and Requirements 5
 1.3 Basic Design Framework 7
 1.3.1 Population Demographics and Data Specifications 8
 1.3.2 Establishment of Ground Truth 9
 1.3.3 Performance Evaluation 9
 1.4 Challenges and Future Directions 10
 1.5 Summary .. 12
References ... 12

2 Quality Assessment for the Electrocardiogram (ECG) 15
 2.1 The Electrocardiogram (ECG) 16
 2.1.1 ECG Morphology 16
 2.1.2 Spectral Characteristics of the ECG 19
 2.2 ECG Quality Considerations 19
 2.3 Single-Channel Approaches 20
 2.3.1 ECG Feature Extraction 20
 2.3.2 Decision Rules 31
 2.4 Multi-lead Approaches 34
 2.4.1 Features Specific to Multi-lead ECGs 35
 2.5 Summary .. 38
References ... 39

3 Quality Assessment for the Photoplethysmogram (PPG) 41
 3.1 The Photoplethysmogram (PPG) 42

References ...
<table>
<thead>
<tr>
<th>3.1.1</th>
<th>PPG Morphology</th>
<th>42</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2</td>
<td>Spectral Characteristics of the PPG</td>
<td>44</td>
</tr>
<tr>
<td>3.2</td>
<td>PPG and Noise</td>
<td>45</td>
</tr>
<tr>
<td>3.3</td>
<td>PPG Quality Considerations</td>
<td>46</td>
</tr>
<tr>
<td>3.4</td>
<td>PPG Feature Extraction</td>
<td>47</td>
</tr>
<tr>
<td>3.4.1</td>
<td>PPG Beat Detection</td>
<td>47</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Time-Domain Features</td>
<td>48</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Frequency-Domain Features</td>
<td>56</td>
</tr>
<tr>
<td>3.5</td>
<td>Decision Rules</td>
<td>58</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Physiological Thresholds and Heuristics</td>
<td>58</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Data Fusion</td>
<td>59</td>
</tr>
<tr>
<td>3.6</td>
<td>Summary</td>
<td>61</td>
</tr>
<tr>
<td>References</td>
<td>61</td>
<td></td>
</tr>
</tbody>
</table>
Signal Quality Assessment in Physiological Monitoring
State of the Art and Practical Considerations
Orphanidou, C.
2018, VI, 63 p. 23 illus. in color., Softcover
ISBN: 978-3-319-68414-7