Lecture 2
\(\mathbb{R}\) - and \(\mathbb{C}\) - Differentiability

Let \(z_0 = x_0 + iy_0 = (x_0, y_0)\) be a point in \(\mathbb{C}\) and \(f\) a function defined on a neighbourhood of \(z_0\) (e.g., on an open disk \(\Delta(z_0, r)\) for some \(r > 0\)) with values in \(\mathbb{C}\). Write \(f(z) = \text{Re} f(z) + i\text{Im} f(z) = u(z) + iv(z) = u(x, y) + iv(x, y)\).

Definition 2.1. The function \(f\) is called \(\mathbb{R}\)-differentiable at \(z_0\) if there exist real numbers \(a, b, c, d\) such that
\[
\begin{align*}
u(x, y) &= v(x_0, y_0) + c\Delta x + d\Delta y + o(\Delta x, \Delta y),
\end{align*}
\]
where \(\Delta x := x - x_0, \Delta y := y - y_0\) and \(o(\Delta x, \Delta y)\) denotes any real-valued function with the property
\[
\frac{o(\Delta x, \Delta y)}{\sqrt{(\Delta x)^2 + (\Delta y)^2}} \to 0 \text{ as } (\Delta x)^2 + (\Delta y)^2 \to 0.
\]

Here \(a, b, c, d\) are determined uniquely and are in fact the corresponding first-order partial derivatives of \(u\) and \(v\) at \((x_0, y_0)\):
\[
\begin{align*}
a &= \frac{\partial u}{\partial x}(x_0, y_0), & b &= \frac{\partial u}{\partial y}(x_0, y_0), & c &= \frac{\partial v}{\partial x}(x_0, y_0), & d &= \frac{\partial v}{\partial y}(x_0, y_0).
\end{align*}
\]

We will now introduce the concept of complex differentiability and compare it with that of real differentiability as defined above.

Definition 2.2. The function \(f\) is said to be \(\mathbb{C}\)-differentiable at \(z_0\) if there exists the limit
\[
\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z},
\]
that is, one can find \(A \in \mathbb{C}\) such that for any \(\varepsilon > 0\) there is a sufficiently small \(\delta > 0\) with the property
\[
\left| \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} - A \right| < \varepsilon.
\]
if $0 < |\Delta z| < \delta$. In this case, the complex number A, i.e., the value of the limit, is called the derivative of f at z_0 and is denoted by $f'(z_0)$.

The usual rules from real analysis for computing the derivatives of sums, products, quotients and compositions of \mathbb{C}-differentiable functions work here (check!).

Definition 2.2 is equivalent to saying that for some $A \in \mathbb{C}$ the function f is represented as

$$f(z) = f(z_0) + A\Delta z + o(\Delta z),$$

where $\Delta z := z - z_0$ and $o(\Delta z)$ denotes any complex-valued function with the property

$$\frac{o(\Delta z)}{\Delta z} \to 0 \text{ as } \Delta z \to 0$$

(note that one can write $o(\Delta z)$ instead of $o(\Delta x, \Delta y)$ in Definition 2.1). By separating the real and imaginary parts in identity (2.1), we see that it is equivalent to the following pair of real identities:

$$u(x, y) = u(x_0, y_0) + \text{Re} \, A \Delta x - \text{Im} \, A \Delta y + o(\Delta x, \Delta y),$$

$$v(x, y) = v(x_0, y_0) + \text{Im} \, A \Delta x + \text{Re} \, A \Delta y + o(\Delta x, \Delta y).$$

Comparing these identities with Definition 2.1 and taking into account that the constants a, b, c, d are chosen uniquely, we obtain:

Theorem 2.1. The function f is \mathbb{C}-differentiable at $z_0 = x_0 + iy_0$ if and only if it is \mathbb{R}-differentiable at z_0 and the first-order partial derivatives of u and v at (x_0, y_0) satisfy the relations

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0), \quad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$

(2.2)

Relations (2.2) are called the Cauchy-Riemann equations or simply the CR-equations. We will now rewrite them in a different form.

Definition 2.3. Let f be \mathbb{R}-differentiable at z_0. Set

$$\frac{\partial f}{\partial z}(z_0) := \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_0, y_0) - i \frac{\partial f}{\partial y}(x_0, y_0) \right), \quad \frac{\partial f}{\partial \bar{z}}(z_0) := \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_0, y_0) + i \frac{\partial f}{\partial y}(x_0, y_0) \right),$$

where

$$\frac{\partial f}{\partial x}(x_0, y_0) := \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0), \quad \frac{\partial f}{\partial y}(x_0, y_0) := \frac{\partial u}{\partial y}(x_0, y_0) + i \frac{\partial v}{\partial y}(x_0, y_0).$$

Now, multiplying the second identity from Definition 2.1 by i, adding it to the first one and substituting

$$\Delta x = \frac{\Delta z + \Delta \bar{z}}{2}, \quad \Delta y = \frac{\Delta z - \Delta \bar{z}}{2i},$$

we obtain:

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0), \quad \frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0).$$
we obtain
\[f(z) = f(z_0) + \left(\frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0) \right) \frac{\Delta z + \overline{\Delta z}}{2} + \]
\[\left(\frac{\partial u}{\partial y}(x_0, y_0) + i \frac{\partial v}{\partial y}(x_0, y_0) \right) \Delta z + \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_0, y_0) + i \frac{\partial f}{\partial y}(x_0, y_0) \right) \Delta z \]
\[f(z) = f(z_0) + \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_0, y_0) - i \frac{\partial f}{\partial y}(x_0, y_0) \right) \Delta z + \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_0, y_0) + i \frac{\partial f}{\partial y}(x_0, y_0) \right) \overline{\Delta z} + o(\Delta z) = \]
\[f(z) = f(z_0) + \frac{\partial f}{\partial z}(z_0) \Delta z + \frac{\partial f}{\partial \overline{z}}(z_0) \overline{\Delta z} + o(\Delta z). \]

Comparing the above formula with (2.1), we see:

Theorem 2.2. The function \(f \) is \(\mathbb{C} \)-differentiable at \(z_0 \) if and only if it is \(\mathbb{R} \)-differentiable at \(z_0 \) and \(\frac{\partial f}{\partial \overline{z}}(z_0) = 0 \). In this case \(f'(z_0) = \frac{\partial f}{\partial z}(z_0) \).

Proof. Homework. (Hint: use, e.g., Exercise 2.4.) \(\square \)

Remark 2.1. The fact that the CR-equations from Theorem 2.1 are equivalent to the condition \(\frac{\partial f}{\partial \overline{z}}(z_0) = 0 \) can be also seen directly from Definition 2.3 by separating the real and imaginary parts of \(\frac{\partial f}{\partial \overline{z}}(z_0) \). Indeed, we have
\[
\frac{\partial f}{\partial \overline{z}}(z_0) = \frac{1}{2} \left(\frac{\partial u}{\partial x}(x_0, y_0) - \frac{\partial v}{\partial y}(x_0, y_0) \right) + i \frac{1}{2} \left(\frac{\partial v}{\partial x}(x_0, y_0) + \frac{\partial u}{\partial y}(x_0, y_0) \right),
\]
hence the complex identity \(\frac{\partial f}{\partial \overline{z}}(z_0) = 0 \) is equivalent to the pair of real identities in (2.2).

The “formal derivatives” \(\frac{\partial f}{\partial z} \) and \(\frac{\partial f}{\partial \overline{z}} \) can be often treated as “usual” derivatives. For example, consider a complex-valued polynomial in \(x, y \)
\[P(x, y) = \sum_{0 \leq \ell, m \leq K} a_{\ell m} x^{\ell} y^{m}, \ a_{\ell m} \in \mathbb{C}. \]
Substituting
\[x = \frac{z + \overline{z}}{2}, \quad y = \frac{z - \overline{z}}{2i}, \]
we express \(P \) via \(z, \overline{z} \):
\[P = \sum_{0 \leq \ell, m \leq K} b_{\ell m} z^{\ell} \overline{z}^{m}, \]
for some \(b_{\ell m} \in \mathbb{C} \).
Proposition 2.1. For all $z_0 \in \mathbb{C}$ we have
\[
\frac{\partial P}{\partial z}(z_0) = \sum_{0 \leq \ell, m \leq K} \ell b_{\ell m} z_0^{\ell-1} z_0^{m}, \quad \frac{\partial P}{\partial \bar{z}}(z_0) = \sum_{0 \leq \ell, m \leq K} mb_{\ell m} z_0^{\ell} z_0^{m-1}.
\]

Proof. It suffices to prove the proposition for any monomial $Q := z^\ell z^m$. Since $Q = (x + iy)^\ell (x - iy)^m$, for $z_0 = x_0 + iy_0$ we calculate
\[
\frac{\partial Q}{\partial x}(x_0, y_0) = \ell (x_0 + iy_0)^{\ell-1} (x_0 - iy_0)^m + m (x_0 + iy_0)^\ell (x_0 - iy_0)^{m-1} =
\ell z_0^{\ell-1} z_0^{m} + mz_0^\ell z_0^{m-1},
\]
\[
\frac{\partial Q}{\partial y}(x_0, y_0) = i\ell (x_0 + iy_0)^{\ell-1} (x_0 - iy_0)^m - im (x_0 + iy_0)^\ell (x_0 - iy_0)^{m-1} =
i\ell z_0^{\ell-1} z_0^{m} - imz_0^\ell z_0^{m-1}
\]
(check!). Hence,
\[
\frac{\partial Q}{\partial z}(z_0) = \frac{1}{2} \left(\frac{\partial Q}{\partial x}(x_0, y_0) - i \frac{\partial Q}{\partial y}(x_0, y_0) \right) = \ell z_0^{\ell-1} z_0^{m},
\]
\[
\frac{\partial Q}{\partial \bar{z}}(z_0) = \frac{1}{2} \left(\frac{\partial Q}{\partial x}(x_0, y_0) + i \frac{\partial Q}{\partial y}(x_0, y_0) \right) = mz_0^\ell z_0^{m-1},
\]
which completes the proof. \(\square\)

We will be mostly interested in the \(\mathbb{C}\)-differentiability of functions on open subsets of the complex plane.

Definition 2.4. Let \(D \subset \mathbb{C}\) be an open subset. A function \(f : D \rightarrow \mathbb{C}\) is said to be holomorphic on \(D\) if \(f\) is \(\mathbb{C}\)-differentiable at every point of \(D\). All functions holomorphic on \(D\) form a vector space over \(\mathbb{C}\), which we denote by \(H(D)\). Functions in \(H(\mathbb{C})\) (i.e., those holomorphic on all of \(\mathbb{C}\)) are called entire.

We have the usual facts:

1. if \(f, g \in H(D)\), then \(f + g \in H(D)\) and \(fg \in H(D)\);
2. if \(f, g \in H(D)\) and \(g\) does not vanish at any point of \(D\), then \(f/g \in H(D)\);
3. if \(f \in H(D)\), \(g \in H(G)\), \(f(D) \subset G\), then \(g \circ f \in H(D)\).

The proofs are identical to those for functions differentiable on open subsets of \(\mathbb{R}\) from real analysis (check!).

Usually, in what follows \(D\) will be a domain, i.e., an open connected subset of \(\mathbb{C}\), where connectedness is understood as the existence, for any \(z, w \in D\), of a path in \(D\) joining \(z\) and \(w\), that is, of a continuous map \(\gamma : [0, 1] \rightarrow D\) with \(\gamma(0) = z\), \(\gamma(1) = w\) (in this case, we sometimes say that \(z\) is the initial point of \(\gamma\) and \(w\) is its terminal point). Strictly speaking, the above property is called path-connectedness but for open subsets of \(\mathbb{R}^n\) (in fact, for open subsets of any locally path-connected topological space) it is equivalent to connectedness, i.e., to the non-existence of a non-trivial subset that is both open and closed (check!).
In what follows, we will be often interested in extending a function \(f \in H(D) \) holomorphically beyond the domain \(D \). Namely, for a domain \(G \supset D \) we say that \(f \) \{holomorphically\} extends \{to\} \(G \), or that \(f \) can be \{holomorphically\} extended \{to\} \(G \), if there exists \(F \in H(G) \) such that \(F(z) = f(z) \) for all \(z \in D \). In this case \(F \) is called a holomorphic extension of \(f \) \{to\} \(G \) and we also say that \(f \) extends to a function holomorphic on \(G \), or that \(f \) can be extended to a function holomorphic on \(G \).

Example 2.1. Let \(f(z) := z = x + iy \). Here \(u = x \), \(v = y \), hence

\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \equiv 1, \quad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \equiv 0.
\]

Thus, we see that \(f \) is an entire function. It then follows that every polynomial \(P(z) = a_kz^k + a_{k-1}z^{k-1} + \cdots + a_0 \) in \(z \) is an entire function.

Example 2.2. Let \(f(z) := e^z = e^x \cos y + i e^x \sin y \). Here \(u = e^x \cos y \), \(v = e^x \sin y \), hence

\[
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = e^x \cos y, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = -e^x \sin y.
\]

Therefore, \(f \) is an entire function. Also, for any \(z_0 \in \mathbb{C} \) we have

\[
f'(z_0) = \frac{\partial f}{\partial z}(z_0) = \frac{1}{2} \left(\frac{\partial f}{\partial x}(x_0, y_0) - i \frac{\partial f}{\partial y}(x_0, y_0) \right) = \frac{1}{2} (e^{z_0} - i(e^{z_0})) = e^{z_0}
\]

as expected. It then follows that the basic trigonometric functions

\[
\cos z := \frac{e^z + e^{-iz}}{2}, \quad \sin z := \frac{e^z - e^{-iz}}{2i}
\]

are entire as well.

Example 2.3. Let \(f(z) := \bar{z} = x - iy \). Here \(u = x \), \(v = -y \), hence

\[
\frac{\partial u}{\partial x} \equiv 1, \quad \frac{\partial v}{\partial y} \equiv -1, \quad \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} \equiv 0.
\]

Therefore, \(f \) is not \(\mathbb{C} \)-differentiable at any point of \(\mathbb{C} \).

Example 2.4. Let \(f(z) := \bar{z}^2 = x^2 - y^2 - 2ixy \). Here \(u = x^2 - y^2 \), \(v = -2xy \), hence

\[
\frac{\partial u}{\partial x} = 2x, \quad \frac{\partial v}{\partial y} = -2x, \quad \frac{\partial u}{\partial y} = -2y, \quad \frac{\partial v}{\partial x} = -2y.
\]

Therefore, \(f \) is only \(\mathbb{C} \)-differentiable at the origin. In particular, \(f \) is not holomorphic on any domain in \(\mathbb{C} \).

Notice also that as a consequence of Proposition 2.1 we have:
Corollary 2.1. The polynomial P from Proposition 2.1 is an entire function if and only if $b_{t,m} = 0$ for all $m > 0$. In this case the derivative $P' = \frac{\partial P}{\partial z}$ is given by formal differentiation with respect to z.

Proof. Homework. (Hint: use exercise 2.10.) □

Exercises

2.1. Let f be \mathbb{R}-differentiable at z_0. Prove that the Jacobian of f at z_0 is equal to

$$\left| \frac{\partial f}{\partial z}(z_0) \right|^2 - \left| \frac{\partial f}{\partial \bar{z}}(z_0) \right|^2.$$

2.2. Let f be \mathbb{R}-differentiable at z_0. Prove that the limit set of the ratio

$$g(z) := \frac{f(z) - f(z_0)}{z - z_0}, \quad z \neq z_0,$$

at z_0 is the circle centred at the point $\frac{\partial f}{\partial z}(z_0)$ of radius $\left| \frac{\partial f}{\partial \bar{z}}(z_0) \right|$. Here the limit set consists of all limit points of g at z_0, i.e., of all complex numbers A for which there is a sequence $\{z_n\}$ not including the point z_0, with $|z_n - z_0| \to 0$ as $n \to \infty$, such that $|g(z_n) - A| \to 0$.

2.3. Let f be continuously differentiable on \mathbb{C}. Suppose that f preserves distances, i.e.,

$$|f(z_1) - f(z_2)| = |z_1 - z_2| \quad \forall z_1, z_2 \in \mathbb{C}.$$

Prove that either $f(z) = e^{i\alpha}z + a$, or $f(z) = e^{i\alpha}\bar{z} + a$ for some $a \in \mathbb{C}$ and $\alpha \in \mathbb{R}$.

(Hint: use Exercise 2.2.)

2.4. Assume that f is defined on a neighbourhood of a point z_0 and in this neighbourhood for some $A, B \in \mathbb{C}$ the following holds:

$$f(z) = f(z_0) + A\Delta z + B\overline{\Delta z} + o(\Delta z),$$

where $\Delta z := z - z_0$. Prove that f is \mathbb{R}-differentiable at z_0 with $A = \frac{\partial f}{\partial z}(z_0)$ and $B = \frac{\partial f}{\partial \bar{z}}(z_0)$.

2.5. Suppose that $f = u + iv$ is defined on a neighbourhood of 0 and is continuous at 0. Assume that all first-order partial derivatives of u and v exist at 0 and satisfy the CR-equations at 0. Does it follow that f is \mathbb{C}-differentiable at the origin? Prove your conclusion.
2.6. For each of the following functions, find all points at which it is \(C \)-differentiable:

(i) \(z^2 |z|^4 \),

(ii) \((\text{Re } z)^4\),

(iii) \(\sin(\text{Im } z)\).

2.7. Let \(f = u + iv \) be \(C \)-differentiable at \(z_0 \), with \(f'(z_0) \neq 0 \), and continuously differentiable on a neighbourhood of \(z_0 \). Prove that the angle between the level sets of \(u \) and \(v \) at \(z_0 \) (that is, any of the four angles between the tangent lines to the level sets at \(z_0 \)) is equal to \(\pi/2 \). (Hint: write the tangent lines to the level sets at \(z_0 \) via the first-order partial derivatives of \(u \) and \(v \) at \(z_0 \).)

2.8. Suppose that a function \(f \) is \(C \)-differentiable at a point \(z_0 \). Prove that the function

\[g(z) := f(\bar{z}) \]

is \(C \)-differentiable at the point \(\bar{z}_0 \) and \(g'(\bar{z}_0) = f'(z_0) \).

2.9. Suppose that a function \(f \) is \(C \)-differentiable at a point \(z_0 \) and \(f'(z_0) \neq 0 \). Show that for any disk \(\Delta(z_0, r) \) on which \(f \) is defined the set \(f(\Delta(z_0, r)) \) cannot lie in a half-plane on either side of any line passing through \(f(z_0) \).

2.10. Show that for a polynomial

\[P(z, \bar{z}) = \sum_{0 \leq \ell, m \leq K} b_{\ell m} z^\ell \bar{z}^m, \ b_{\ell m} \in \mathbb{C}, \]

in \(z, \bar{z} \) one has \(P \equiv 0 \) on an open subset of \(\mathbb{C} \) if and only if \(b_{\ell m} = 0 \) for all \(\ell, m \in \{0, \ldots, K\} \). (Hint: argue by induction using Proposition 2.1.)

2.11. Suppose that for a polynomial

\[P(z, \bar{z}) = \sum_{0 \leq \ell, m \leq K} b_{\ell m} z^\ell \bar{z}^m, \ b_{\ell m} \in \mathbb{C}, \]

in \(z, \bar{z} \) we have \(b_{\ell m} \neq 0 \) for some \(0 \leq \ell \leq K \) and some \(0 < m \leq K \). Prove that the set of points at which \(P \) is \(C \)-differentiable is nowhere dense in \(\mathbb{C} \). (Hint: use Exercise 2.10.)

2.12. Find the derivatives of \(\sin z \) and \(\cos z \) at an arbitrary point of \(\mathbb{C} \).

2.13. Prove that \(|\cos z| \) and \(|\sin z| \) are not bounded on \(\mathbb{C} \).

2.14. How many zeroes does the entire function \(2 + \sin z \) have in \(\mathbb{C} \)? Find all the zeroes.

2.15. Using the power series expansions of \(e^x \), \(\cos y \), \(\sin y \), find a power series expansion with centre 0 for each of \(e^z \), \(\cos z \), \(\sin z \), i.e., represent each of these functions in the form
\[
\sum_{n=0}^{\infty} c_n z^n \quad \forall z \in \mathbb{C},
\]
where \(c_n \in \mathbb{C}, \ n = 0, 1, 2, \ldots \) (Hint: substitute the corresponding series into the expression \(e^x \cos y + i e^x \sin y \) using arithmetic operations with absolutely convergent series and the possibility of re-arranging their terms.)

2.16. Prove that the function \(\frac{\sin z}{z} \) is holomorphic on \(\mathbb{C} \setminus \{0\} \) and that it holomorphically extends to \(\mathbb{C} \).

2.17. Let
\[
f(z) := \begin{cases}
 z^2 \sin \frac{1}{z} & \text{if } z \neq 0, \\
 0 & \text{if } z = 0.
\end{cases}
\]
Is this function \(\mathbb{C} \)-differentiable at 0? Prove your conclusion.

2.18. Let \(f(z) = u(x) + iv(y) \) be an entire function. Prove that \(f(z) = az + b \), where \(a \in \mathbb{R}, b \in \mathbb{C} \).

2.19. Let \(a, b, c \in \mathbb{C} \). Write the quadratic polynomial \(P(x, y) = ax^2 + bxy + cy^2 \) in \(x, y \) via \(z \) and \(\bar{z} \) and find necessary and sufficient conditions on \(a, b, c \) for \(P \) to be an entire function.

2.20. Find all entire functions \(f \) such that \(\operatorname{Re} f(z) = x^2 - y^2 \).

2.21. Find an entire functions \(f \) such that \(\operatorname{Re} f(z) = x^2 - y^2 + xy, f(0) = 0 \).

2.22. Find an entire functions \(f \) such that \(\operatorname{Re} f(z) = e^x (x \cos y - y \sin y), f(0) = 0 \).

2.23. Let \(g : [0, 1] \to \mathbb{C} \) be a continuous function. For all \(z \in \mathbb{C} \setminus [0, 1] \) define
\[
f(z) := \frac{1}{2\pi i} \int_{0}^{1} \frac{g(t)}{t - z} \, dt,
\]
where the integral is understood by separating the real and imaginary parts of the integrand. Prove that \(f \in H(\mathbb{C} \setminus [0, 1]) \).

2.24. Construct an example showing that the Mean Value Theorem for \(\mathbb{C} \)-valued functions does not hold. Namely, find a differentiable function \(f : [0, 1] \to \mathbb{C} \) such that \(f'(t) \neq f(1) - f(0) \) for all \(t \in (0, 1) \).

2.25. Prove the following variant of the Mean Value Theorem for \(\mathbb{C} \)-valued functions: if \(f : [0, 1] \to \mathbb{C} \) is a continuously differentiable function, then the difference \(f(1) - f(0) \) lies in the closure of the convex hull of the set \(\{f'(t) : t \in [0, 1]\} \). (Hint: use the Newton-Leibniz formula for \(\operatorname{Re} f \) and \(\operatorname{Im} f \).)

2.26. Let \(P \) be a polynomial in \(z \) of positive degree and \(S \) the smallest convex polygon containing the roots of \(P \). Prove that all roots of \(P' \) lie in \(S \). (Hint: use Exercise 1.7.)
Twenty-One Lectures on Complex Analysis
A First Course
Isaev, A.
2017, XII, 194 p. 30 illus., Softcover
ISBN: 978-3-319-68169-6