1 Key Competencies for Teaching Mathematical Modeling 1
 1.1 Research in Teacher Education on Mathematical Modeling:
 Short Background ... 1
 1.2 Mathematical Modeling Course for Educating the Educators:
 An Evaluated Module .. 3
 1.2.1 Guiding Principle and “Pedagogical Double-Decker” 4
 1.2.2 Structure of a Modeling Course for Teacher Education:
 Theory-Practice-Balance ... 4
 1.2.3 Mathematical Modeling and Cooperative Learning 6

2 Theoretical Competency: For Your Practical Work 13
 2.1 What Does Mathematical Modeling Mean?:
 Goals and Aims .. 13
 2.1.1 Real Situation (RS) .. 15
 2.1.2 Mental Representation of the Situation (MRS) 15
 2.1.3 Real Model (RM) .. 15
 2.1.4 Extra-Mathematical Knowledge (EMK) 16
 2.1.5 Mathematical Model (MM) 16
 2.1.6 Mathematical Results (MR) 16
 2.1.7 Real Results (RR) .. 17
 2.1.8 Goals and Justifications for the Inclusion Mathematical
 Modeling in Everyday Teaching 17
 2.1.9 International Perspectives on Mathematical Modeling 18
 2.2 Modeling Cycle(s): A Multi-faceted Learning Instrument 20
 2.2.1 Modeling Cycle from Applied Mathematics 21
 2.2.2 Didactical or Pedagogical Modeling Cycle 22
 2.2.3 Psychological Modeling Cycle 23
 2.2.4 Diagnostic Modeling Cycle/Modeling Cycle
 from a Cognitive Perspective 24
2.2.5 Modeling Cycles Presented in Mathematics Standards: Exemplified Along the Common Core State Standards Mathematics of the United States of America 25
2.2.6 Mathematical Modeling Cycle as a Multi-purpose (and Metacognitive) Learning Instrument 27
2.3 Far from Linearity: Individual Modeling Routes 30
2.3.1 Visible Modeling Routes and the Influence of Extra-Mathematical Experience 31
2.3.2 Mathematical Thinking Styles and Modeling Routes of Learners and Teachers 34
2.3.3 Teachers’ Behavior While Modeling Activities in the Classroom .. 36
2.3.4 Mr. P.: The “Retrospective Formalizer” 37
2.3.5 Mrs. R.: The “Realistic Validator” 38

3 Task Competency: For Your Instructional Flexibility 41
3.1 Criteria of (Good) Modeling Problems 43
3.1.1 What Characterizes a Modeling Problem? 43
3.1.2 Criteria of Modeling Problems 46
3.1.3 Developing a Modeling Problem: From Brainstorming to a Challenge for Students in School 47
3.1.4 Ready for a Change?: From a Problem to a Modeling Problem .. 56
3.1.5 The Potential of Modeling Problems: One for All and All for One .. 58
3.2 Mathematical Modeling Competencies: Fostering and Eliciting .. 65
3.2.1 Fostering and Eliciting Modeling Competencies 67
3.3 Influence of the Real Context of the Task on an Individual’s Modeling Processes 70

4 Instructional Competency: For Effective and Quality Lessons 77
4.1 Quality Criteria for Good Lessons 77
4.1.1 Effective and Learner-Oriented Classroom Management .. 78
4.1.2 Cognitive Activation of Learners 78
4.1.3 Meta-Cognitive Activation of Learners 79
4.1.4 Encouraging Multiple Solutions 79
4.1.5 Mathematical Modeling as a Long-Term Learning Process .. 79
4.2 Planning and Executing Mathematical Modeling Lessons 80
4.2.1 First Part: 8 Principles for Planning and Executing Mathematical Modeling Lessons 80
4.2.2 Second Part: Lesson Plan for the Modeling Problem “Moving House” ... 83
4.3 Interventions During Modeling Activities 86
4.4 Ways of Accustoming Students to Modeling Problems and the Role of Technology
4.4.1 First Aspect: Introducing Modeling Problems to Students
4.4.2 Second Aspect: The Role of Technologies

5 Diagnostic Competency: Basis for Your Assessment and Grading
5.1 From Recognizing Progress and Difficulties to the Right Feedback (and Intervention)
5.1.1 Diagnose: Definitions and Theoretical Background
5.1.2 Diagnostic Sheet as a Tool for Diagnosing Modeling Competency During the Solving Process
5.1.3 Written Feedback for Written Solutions of Modeling Problems
5.2 Assessing Modeling Through Tests

6 Mathematical Modeling Days and Projects: Go for More
6.1 How to Plan Mathematical Modeling Days
6.1.1 Structure of the Modeling Days
6.1.2 Which Spacing of Bus Stops Along a Bus Route Is Optimal?
6.1.3 Students’ Solution
6.2 Building Bridges Between University and School
6.2.1 Pre-service Teachers’ Reflections After Students’ Modeling Activities

7 Reflections and Outlook

Appendix

References

Index
Learning How to Teach Mathematical Modeling in School and Teacher Education
Borromeo Ferri, R.
2018, XVII, 153 p. 43 illus., 23 illus. in color., Hardcover
ISBN: 978-3-319-68071-2