Nowadays, the systems and methods of artificial intelligence find a wide spectrum of effective—and sometimes unexpected—applications in different fields of technologies and sciences. One of these areas is medical engineering, in which their application is aimed at increasing the effectiveness of diagnosing various diseases and selecting appropriate ways of treatment. The rapid development of artificial intelligence systems requires the intensification of training of a growing number of relevant specialists. At the same time, artificial intelligence systems have significant perspectives of their application inside education technologies themselves for improving the quality of training of specialists taking into account personal characteristics of such specialists and also the emergence of new computer devices.

In digital systems of artificial intelligence, scientists try to reproduce inherited intellectual abilities of human and other biological organisms. The profound study of genetic systems and inherited biological processes can give new approaches to create more and more effective methods of artificial intelligence. For this reason, intensive development of biomathematical studies on patents of living nature is required, which ensure noise immunity of genetic information, its quasi-holographic features, its connection with the Boolean algebra of logic used in technical systems of artificial intelligence, etc. In other words, study of genetic systems and creation of methods of artificial intelligence go in parallel manner to enrich each other.

The purpose of the First International Conference of Artificial Intelligence, Medical Engineering, Education (August 21–23, 2017, Moscow, Russia) is to present new thematic approaches, methods, and achievements of mathematicians, biologists, physicians, and technologists and also to attract additional interest of different specialists to this perspective theme. Its proceedings additionally include articles on specific tasks in various fields, where artificial intelligence systems can be applied in the future with great benefit.

conference is one of the examples of growing Russian-Chinese cooperation in
different fields of science and education.

The 32 contributions to the conference were selected by the programme com-
mittee for inclusion in this book out of all submissions.

Our sincere thanks and appreciation to the board members as listed below:

Rivner F. Ganiev, Russia
F. Chin, Hong Kong
Viktor A. Glazunov, Russia
C.Z. Wang, China
Janusz Kacprzyk, Poland
O.K. Ban, USA
Gyorgy Darvas, Hungary
Branko Dragovich, Serbia
K. Du, China
Nikolay A. Balonin, Russia
Elena Fimmel, Germany
J.W. Hu, China
Abir U. Igamberdiev, Canada
Valery V. Kozlov, Russia
Oleg P. Kuzovlev, Russia
X.J. Ma, China
Yuri I. Manin, Germany
V.E. Muchin, Ukraine
S.C. Qu, China
Y. Shi, USA
Plamen L. Simeonov, Germany
Alexey V. Borisov, Russia
Tatiana A. Rakcheeva, Russia
J. Su, China
J.Q. Wu, China
Q. Wu, China
Z.W. Ye, China
C.C. Zhang, Taiwan

Finally, we are grateful to Springer-Verlag and Janusz Kacprzyk as the editor
responsible for the series “Advances in Intelligent System and Computing” for their
great support in publishing these conference proceedings.

July 2017
Zhengbing Hu
Sergey V. Petoukhov
Matthew He
Advances in Artificial Systems for Medicine and Education
Hu, Z.; Petoukhov, S.; He, M. (Eds.)
2018, XIII, 344 p. 128 illus., Softcover
ISBN: 978-3-319-67348-6