Contents

1 Introduction .. 1
 1.1 Nanotechnology in Medical Science 1
 1.2 Carbon Nanotubes 2
 1.2.1 Synthesis of Carbon Nanotubes 3
 1.2.2 Carbon Nanotubes: Surface Modification 3
 1.2.3 Optimization of the Growth Condition: Response
 Surface Methodology 4
 1.2.4 Purification of Carbon Nanotubes 4
 1.2.5 Functionalization of Carbon Nanotubes 4
 1.3 Chemically Modified Electrodes 4
 1.4 Glucose Biosensors 5
 1.5 Application of Carbon Nanotubes in the Glucose Biosensor .. 6
 1.6 World Demand of the Electrochemical Glucose Biosensor 6
 1.7 Aim and Objectives of the Book 7
 1.8 Research Scope 7
 1.9 Significance of Research on Electrochemical Glucose
 Biosensors ... 8
 1.10 Organization of the Book 8
 References .. 9

2 Background of the Study 13
 2.1 Structures of Carbon Nanotubes 13
 2.2 Generation of Carbon Nanotubes 14
 2.2.1 The Arc Discharge Method 14
 2.2.2 The Laser Vaporization Method 14
 2.2.3 The Chemical Vapor Deposition Method 15
 2.3 Fabrication of Glucose Biosensor: The First, Second,
 and Third Generation 19
 2.3.1 Carbon Nanotube-Based Biosensors 20
 2.3.2 Functionalization of Carbon Nanotubes 20
2.3.3 Functionalized Carbon Nanotubes to Enhance Electron Transfer Mechanism in Glucose Biosensor 21
2.4 Carbon Nanotube-Based Composites in Glucose Biosensors 25
2.5 Functionalization of Carbon Nanotubes for Other Applications ... 25
 2.5.1 Thermal Applications of Carbon Nanotubes 26
 2.5.2 Medical Applications of Carbon Nanotubes 28
 2.5.3 Antimicrobial Activity of Carbon Nanotubes 29
 2.5.4 Drug Delivery Applications of Carbon Nanotubes 30
 2.5.5 Electro-optical Properties of Carbon Nanotubes 30
 2.5.6 Mechanical Properties of Carbon Nanotubes 30
 2.5.7 Gas Sensors Based on Carbon Nanotubes 31

References. .. 31

3 Experimental Procedures and Materials 39
 3.1 Introduction ... 39
 3.2 Materials.. 39
 3.3 Synthesis of Multilayer Carbon Nanotubes from Camphor Oil by Chemical Vapor Deposition Method 41
 3.4 Synthesis of Well-Crystalline Carbon Nanotubes Via Neutralized Cooling Technique by Carbon Vapor Deposition Method. ... 42
 3.5 Synthesis of Highly Oriented Vertically Aligned Carbon Nanotubes Via Chemical Vapor Deposition Method. 42
 3.6 Synthesis of Selective Aspect Ratio Vertically Aligned Carbon Nanotubes Via Carbon Vapor Deposition Method 43
 3.7 Optimization of Highly Oriented Vertically Aligned Carbon Nanotubes’ Growth Conditions Using Response Surface Methodology: Design of Experimental Matrix and Experimental Procedure ... 43
 3.8 Characterization of Synthesized Carbon Nanotubes 46
 3.8.1 Raman Spectroscopy: Measurement Conditions 47
 3.8.2 Thermogravimetric Analysis: Measurement Conditions ... 47
 3.8.5 Fourier Transform Infrared Spectroscopy: Measurement Conditions 51
 3.9 Chemically Modified Electrodes 52
 3.9.1 Pretreatment of the Electrodes 52
 3.9.2 Preparation of Phosphate Buffer 53
 3.9.3 Preparation of Serum Samples and Real Sample Analysis 53
3.9.4 Fabrication of Chemically Modified Electrodes 53

3.10 Fabrication of Glucose Biosensor Based on Vertically Aligned Carbon Nanotubes Composite: GOx/MWCNTs/Gl/GCE 54

3.10.1 Synthesis, Purification, and Optimization of Multi-walled Carbon Nanotubes .. 54

3.10.2 Fabrication of GOx/MWCNTs/Gl/GCE 54

3.11 Electrochemical Measurements of Modified Electrodes 55

3.11.1 Electrochemical Setup 55

3.11.2 Cyclic Voltammetry 56

3.11.3 Chronoamperometric Response 57

3.12 Integration of Electronic Tongue Based on Frequency Response of GOx/MWCNTs/Gl/GCE Biosensor 57

3.12.1 Square Wave Frequency Measurements of the Electrical Circuit Attached to the Modified Electrodes .. 58

References. .. 59

4 Results and Discussions ... 63

4.1 Fast Synthesis of Multilayer Multi-walled Carbon Nanotubes from Camphor Oil .. 63

4.2 Synthesis of Well-Crystalline Carbon Nanotubes Via Neutralized Cooling Method 66

4.3 Highly Oriented Vertically Aligned Carbon Nanotubes Via Carbon Vapor Deposition Method 69

4.4 Synthesis of Selective Aspect Ratio Vertically Aligned Carbon Nanotubes Via Carbon Vapor Deposition Method 74

4.5 Optimization of the Growth Condition Using Response Surface Methodology .. 76

4.5.1 Crystallinity Model: \(I_c/I_D \)-Single-Response Optimization .. 76

4.5.2 Effect of Deposition Temperature and Concentration of Camphor Oil on Carbon Nanotubes’ Crystallinity 80

4.6 Constant Glucose Biosensor Based on Vertically Aligned Carbon Nanotubes Composites 81

4.6.1 Raman Spectroscopy .. 81

4.6.2 Field Emission Scanning Electron Microscopy 82

4.6.3 Direct Electron Transfer of GOx/MWCNTs/Gl/GCE 83

4.6.4 Biocatalytic Activity of GOx/MWCNTs/Gl/GC Electrode .. 84

4.6.5 Amperometric Determination of Glucose on GOx/MWCNTs/Gl/GC Electrode .. 86

4.6.6 Reproducibility and Stability of the GOx/MWCNTs/ Gl/GC Electrode .. 86
4.6.7 Determination of Glucose in Human Blood Serum and Analytical Recovery of Glucose 87
4.7 Brain-Like Taste Bud Circuit Using the GOx/MWCNTs/Gl/GCE Glucose Biosensor .. 87
4.7.1 Electrical Circuit of a Taste Bud Inspired Network: Single Membrane ... 88

References. ... 90

5 Conclusion .. 93
5.1 Introduction .. 93
5.2 Morphology Optimization of Synthesized Carbon Nanotubes 93
5.3 Fast Synthesizing of the Multilayer Carbon Nanotubes 94
5.4 Well-Crystalline Multi-walled Carbon Nanotubes ... 94
5.5 Highly Oriented Carbon Nanotubes ... 94
5.6 Selective Aspect Ratio of Carbon Nanotubes ... 94
5.7 Vectorial Crystal Growth of Oriented Vertically Aligned Carbon Nanotubes .. 95
5.8 Constant Glucose Biosensor Based on Vertically Aligned Carbon Nanotubes Composites .. 95
5.9 Brain-Like Taste Bud Circuit Using the GOx/MWCNTs/Gl/GCE Glucose Biosensor ... 96
5.10 Research Contribution ... 96
5.11 Recommendations and Future Work ... 97

Index ... 99
Nanocomposite-Based Electronic Tongue
Carbon Nanotube Growth by Chemical Vapor Deposition
and Its Application
Termeh Yousefi, A.
2018, XIII, 101 p. 45 illus., 35 illus. in color., Hardcover
ISBN: 978-3-319-66847-5