Contents

1 **Introduction** .. 1
 1.1 Ecological and Economic Challenges and the Built Environment .. 1
 1.2 Research Aim and Audience. 3
 1.3 Research Question .. 4
 References .. 5

2 **Modern History of Sustainable Architecture** 7
 2.1 Historical Background 7
 2.2 Towards a New Architectural Design Paradigm 9
 References .. 10

3 **Definitions and Paradigm Shift** 13
 3.1 Negative Impact Reduction via Increased Efficiency. 13
 3.2 Positive Impact via Increased Regenerative Effectiveness 15
 References .. 17

4 **Design Principles of Regenerative Design** 19
 4.1 Introduction .. 19
 4.2 Guiding Principles 20
 4.3 Framework for Regenerative Building Design 21
 4.3.1 Regenerative Construction Systems 22
 4.3.2 Regenerative Design Elements 24
 4.3.3 Regenerative Building Materials and Products 24
 4.4 Design Strategies for Regenerative Building Design 26
 4.4.1 Design Strategy 1: Selection of a Construction System...... 26
 4.4.2 Design Strategy 2: Defining of Design Elements and Their Performance 27
 4.4.3 Enhance Air Quality and Human Health 27
 4.4.4 Energy Saving ... 28
 4.4.5 Renewable Energy Production 28
5 Indicators and Metrics of Regenerative Design
 5.1 Introduction ... 33
 5.2 Life Cycle Standards and System Boundary. 35
 5.3 Functional Unit, Year, Tools and Indicators 39
 5.4 Life Cycle Inventory 41
 5.5 Limitations ... 44
 References .. 44

6 Case Studies: Energy Efficiency Versus Regenerative Paradigm 47
 6.1 Introduction .. 47
 6.2 Case Study 1: Efficiency Paradigm (Office Building) 48
 6.3 Case Study 2: Regenerative Paradigm (Office Building) 51
 6.4 Case Study 3: Regenerative Paradigm (Office Building) 53
 6.5 Case Study 4: Regenerative Paradigm (Residential Building) ... 56
 References .. 59

7 Performance Comparison and Quantification 61
 7.1 Introduction .. 61
 7.2 Case Study 1: Efficiency Paradigm 62
 7.3 Case Study 2: Regenerative Paradigm 66
 7.4 Case Study 3: Regenerative Paradigm 68
 7.5 Case Study 4: Regenerative Paradigm 71
 7.6 Case Studies Comparison 73
 References .. 79

8 Regenerative and Positive Impact Architecture Roadmap 81
 8.1 Introduction .. 81
 8.2 Research Findings. 82
 8.3 A Novel Framework for Regenerative Building Design 83
 8.4 Lessons Learned 84
 8.5 Implications for Research and Architectural Design Practice ... 90
 References .. 93
Regenerative and Positive Impact Architecture
Learning from Case Studies
Attia, S.
2018, XIX, 94 p. 29 illus., 26 illus. in color., Softcover
ISBN: 978-3-319-66717-1