
Chapter 2
Knowledge Engineering with Rules

Intelligent systems that use knowledge representation and reasoning methods
described in the previous chapter are commonly referred to as Knowledge-Based
Systems (KBS). The domain that considers building KBS is most generally referred
to as Knowledge Engineering (KE). It involves a number of development methods
and processes. A general KE process can be found in several text-books in this
field [1, 2]. It involves the identification of a specific problem area, the acquisition
and encoding of the knowledge using the selected language, evaluation and mainte-
nance of the intelligent system. According to [3–5] this process can be divided into
the following phases:

1. Problem identification and conceptualization,
2. Knowledge acquisition and categorization,
3. Knowledge modeling including knowledge base design,
4. Selection and application of inference mechanisms,
5. Knowledge evaluation, verification and validation,
6. System maintenance including, knowledge interoperability issues.

Each phase is dependent on the previous one. However, in practice they usually
overlap considerably. Moreover, the process is highly iterative, where each iteration
allows for a more precise refinement of the system model. It is common to visualize
dependencies between these phases in a waterfall like manner, similar to the classic
software life cycle model in Software Engineering (SE) [6].

In this book we are mostly concerned with selected tasks from phases 4 to 6.
This chapter introduces some of these topics with respect to RBS in more detail. In
Sect. 2.1 we discuss the modeling of acquired knowledge with the use of rules and
other representation supporting the design. Twomain groups of participants take part
in these activities. The first one consists ofDomain Experts who posses the requisite
knowledge for problem solving in some specific domain. The second one consists of
knowledge engineers, i.e. persons capable of designing, building and testing a RBS

© Springer International Publishing AG 2018
G.J. Nalepa, Modeling with Rules Using Semantic Knowledge Engineering,
Intelligent Systems Reference Library 130,
https://doi.org/10.1007/978-3-319-66655-6_2

27



28 2 Knowledge Engineering with Rules

Acqusition

Representation

Validation

Reasoning

Explanation

SOLUTION

PROBLEM

meta knowledge

validated knowledge

codified knowledge

raw knowledge

feedback loop

Fig. 2.1 Knowledge engineering process

using the KE methods. Once a rule set is built, an inference mechanism should be
considered, see Sect. 2.2. As we discuss in Sect. 2.3, in the case of large rule sets
their structure, including relations between rules have to be considered. The quality
of the rule base should be analyzed during the design, or at least after it. Selected
methods for this task are mentioned in Sect. 2.4. If possible, the rule base should
be kept independent of the specific system implementation. To make this possible a
specific rule interchange method can be used, see Sect. 2.5. Finally, as today RBS
are not usually stand-alone systems, some specific architectures for their integration
can be used, see Sect. 2.6. The chapter is summarized in Sect. 2.7 (Fig. 2.1).

2.1 Knowledge Acquisition and Rule Base Modeling

Challenges in Acquiring Knowledge

The knowledge engineering process includes the acquisition of new knowledge from
different sources e.g. mainly from domain experts, but also different knowledge
bases, available examples, etc. Knowledge acquisition is a tedious task. In fact, it is
often referred to as theKnowledge Aquisition Bottleneck, described in several classic
books e.g. one by Hayes-Roth [7, 8]. In a straightforward, if somewhat naive form,
the process consists in extraction, refinement, transfer and input of the knowledge to
the appropriate knowledge base.Knowledge acquisition usually startswith reviewing
documents and reading books, papers and manuals related to the problem domain,
as well as reviewing the old cases. Very often the knowledge is also retrieved from
a domain expert, selected during the previous phase, who takes part in the guided



2.1 Knowledge Acquisition and Rule Base Modeling 29

interviews with predefined schemas [9]. During such interviews, an expert answers
a series of questions that aim to elicit knowledge. Moreover, in some cases a certain
domain specific methodology can also be applied. Subsequently the acquired knowl-
edge is studied and analyzed. Then the entire process is repeated again until no new
knowledge is collected. Clearly, this is an inherently iterative process.

There are a number of problems with practical knowledge acquisition:

• syntactic mismatch – human expert knowledge does not easily fit into any formal
language; in most cases it goes beyond the expressive power of formal languages,

• semantic mismatch – there is no way to represent the semantics of the human
expert knowledge within the only syntactically encoded knowledge base,

• contextual and hidden knowledge – most of inter-human communication rely on
assuming some common ontology, contextual knowledge and implicit knowledge,
mostly unavailable for computers, and often tacit,

• common sense knowledge gap – it is challenging to express all common sense
human knowledge,

• knowledge verbalization – human experts have difficultieswith smart verbalization
of knowledge,

• knowledge vagueness – knowledge is often uncertain, imprecise, incomplete, etc.

There are many techniques supporting knowledge acquisition, including: guided
interviews, i.e. following some predefined schemas, or observations, monitoring and
storing expert decisions in an automated or semi-automatedway. A number of classic
books have been published in this area, for example [10] provides an in depth dis-
cussion. Van Harmelen provides a working recipe to start with an analysis of several
representative case studies [11]. Besides the main KE approach, the use of machine
learning is commonly advised for acquiring knowledge from data. This includes rule
induction from databases of sets of case-bases, learning from examples, and rule
generation. They allow knowledge to be generated according to the provided model
of the system or according to the processes performed within the system. Today,
the automated acquisition of knowledge by the machine learning approach is still
an active area of research in AI [12, 13]. However, these methods are outside of the
scope of this book. As today KBS are mainly software based, the knowledge acqui-
sition phase is very often performed using SE techniques related to requirements
analysis.

Knowledge Modeling

Modeling of knowledge is an evolutionary process. During the KE process new
knowledge is collected and added to the knowledge base. Thus functionality of the
KBS system is improved and it gradually evolves into a final version. The problems
thatmayoccur during this phase aremainly related to the vagueness of the knowledge,
as it can also be imprecise or incomplete. Other problems, which can occur during
this phase, include syntax errors that may appear when the knowledge is encoded into
a specific language. It is also possible that some modeling errors may be caused by
the complexity of the knowledge model. Due to the large amount of rules or complex
dependencies, the modeled knowledge may not reflect the acquired knowledge in



30 2 Knowledge Engineering with Rules

an appropriate way. Therefore, in order to make the modeling process more efficient
a number of visual methods have been developed [14]. The visual (or semi-visual)
languages facilitate themodeling phasemaking itmore transparent for the knowledge
engineer [15]. Therefore, the selection of an appropriate modeling technique can
make this phase more efficient and improve the maintainability of the resulting KB.

As the number of rules identified in the system is increasing, it may be difficult
to model and manage them. Thus, in complex systems having rule sets consisting
of thousands of rules, various forms of rule set representations are used. Such forms
as tables or trees are logically equivalent to a set of rules, but they are easier to
understand and maintain. Therefore, below we discuss how these two knowledge
representations can be used during the modeling process to represent the rule base.

Decision Tables for Rule Modeling

Decision tables are used to group sets of rules that are similar with respect to a set of
formulas present in the preconditions and conclusions or actions [16]. Here, we start
with the most basic logical form of a propositional rule (Horn clause [17]) which can
be expressed as follows:

rule : p1 ∧ p2 ∧ · · · ∧ pn → h

The canonical set of rules is one that satisfies the following assumptions [16]:

• all rules use the same propositional symbols in the same order, and
• the rules differ only with respect to using the negation symbol before the proposi-
tional symbol.

A complete canonical set of rules is a set containing all the possible combinations
of using the negation sign, and it can be expressed as follows (# means either nothing
or the negation symbol) [16]:

rule1 : #p1 ∧ #p2 ∧ · · · ∧ #pn −→ #h1
rule2 : #p1 ∧ #p2 ∧ · · · ∧ #pn −→ #h2

...

rulem : #p1 ∧ #p2 ∧ · · · ∧ #pn −→ #hm

A set of rules which is not in the canonical form, can always be transformed
into an equivalent canonical set. Typically, such canonical sets of rules are used for
creating decision tables.

The binary decision table corresponding to the above schema is presented in
Table2.1, where vs and ws are values of conditional and decision attributes. In the
presented table, each rule is specified in a single row, in which the first n columns
specify the conditions under which a specific conclusion is fulfilled (e.g. specific
actions canbe executed or someconclusion statements can be inferred).As conditions
are limited to binary logic, this is often too limited for knowledge encoding.

To enhance the expressive power and knowledge representation capabilities
Attributive Logic can be used, see [18] for Attribute-Value Pair Table (AV-Pair Table)



2.1 Knowledge Acquisition and Rule Base Modeling 31

Table 2.1 Decision table

p1 p2 . . . pn h

v11 v12 . . . v1n w1

v21 v22 . . . v2n w2

.

.

.
.
.
.

.

.

.
. . .

.

.

.

vk1 vk2 . . . vkn wk

Table 2.2 Attributive decision table

Rule p1 p2 . . . p j . . . pn h1 h2 . . . hm

r1 v11 v12 . . . v1 j . . . v1n w11 w12 . . . w1m

r2 v21 v22 . . . v2 j . . . v2n w21 w22 . . . w2m

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

ri vi1 vi2 . . . vi j . . . vin wi1 wi2 . . . wim

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

rk vk1 vk2 . . . vk j . . . vkn wk1 wk2 . . . wkm

or [16] for Attributive Decision Table (AD-Table). An example of such a decision
table is shown in Table2.2. A row of an AD-Table represents a rule, expressed as
follows:

ri : (p1 = vi1) ∧ (p2 = vi2) ∧ · · · ∧ (pn = vin) → h1 = wi1 ∧ h2 = wi2 ∧ · · · ∧ hm = wim

The conditions of such a rule can take several values from a specified domain.
Moreover, this approach can be extended in order to allow for specifying an attribute
value as an interval or a subset of the domain [16]. An example of such a table
determining a rented car category1 based upon the driver’s age and driving license
holding period is presented in Table2.3. A second rule of this table corresponds to
the following rule:

r2 : (driver_age < 21) ∧ (driving_license_hp < 2) → rented_car_cat = A

More extensions to such decision tables, e.g. allowing for specifying an attribute
value as an interval or a subset of the domain, can be found in [16]. Clearly the tabular
knowledge representation has a very intuitive interpretation. Furthermore, through
the examination of the table it is possible to obtain a better understanding of the
contents of the rule base. It also allows for the identification of potential problems,

1The rented car category corresponds to Euro Car Segment classification, see: http://en.wikipedia.
org/wiki/Euro_Car_Segment.

http://en.wikipedia.org/wiki/Euro_Car_Segment
http://en.wikipedia.org/wiki/Euro_Car_Segment


32 2 Knowledge Engineering with Rules

Table 2.3 Example of decision table

Driver age Driving license holding period Rented car category

<18 Any None

<21 <2 A

<21 >=2 {A, B}

>=21 <2 {A, B, C}

>=21 >=2 {A, B, C, D }

none

A A, B A, B, C A, B, C, D

< 18 < 21 >= 21

< 2 < 2>= 2 >= 2

driver age

driver license 
holding period

rented car 
category

Fig. 2.2 Example of a decision tree corresponding to the decision table

such as missing values. In a way, decision tables allow for structuring rule bases. On
the other hand, decision trees are useful for modeling how the knowledge is actually
used in the inference process.2

Decision Trees for Rule Modeling

Decision trees allow for organizing rules in a hierarchical manner. As they show the
dependencies between conditions and decisions, this clarifies the thinking about the
consequences of certain decisions being made [19]. A decision tree has a flowchart-
like structure in which a node represents an attribute and branches from such a node
represent the attribute values. The end nodes (leaves) represent the final decision
values. An example of a decision tree corresponding to the decision table from
Table2.3 is presented in Fig. 2.2.

Trees, especially Binary Decision Trees (BDTs), are very popular visual decision
structures. They are used both in computer science and in other disciplines [16].
BDT consists of simple tests. Each test is an evaluation of a propositional statement
which can be either true or false. Thus, a BDT leads through a series of tests to arrive
eventually at some decision. Such a form of knowledge representation allows for
the clear presentation of the decision process. Unfortunately, decision trees become
much more complex if each attribute has a large number of different values because
of the redundancy of nodes.

2Furthermore, they are useful to be integrated with user dialogs.



2.1 Knowledge Acquisition and Rule Base Modeling 33

Both trees and tables are also useful from a practical point of view, as they provide
a visual representation of the rule base. In this book, we assume after [16] that
the transformation between rules, tables, and trees is always possible (having some
syntactic restrictions). However, it is not always straightforward. These visualmodels
help during the design process. After it they are translated to a set of rules that can
then be processed using some of the common techniques described below. Similar
to the acquisition phase, today a number of SE techniques are used in rule modeling.
While we do not mention them here, they will be briefly described in Sect. 3.5.

2.2 Automated Inference with Rules

In rule-based systems the inference process requires two main elements. The first
is the knowledge base, i.e. a rule base encoded in the format appropriate for the
inference engine. The second is the inference engine itself. It uses specific inference
algorithms to analyze the contents of the rules base, identify rules that can be fired,
and fires them. It is generally assumed that the engine and algorithm are independent
from the encoded knowledge and allow for the processing of knowledge from any
domain. Important aspects that determine the operations of the inference engine
include the inference mode and tasks.

The inference mode defines how the knowledge contained in the rule base is
processed. In RBS two main inference modes are used [20]:

• Forward chaining is the data-driven (or bottom-up) reasoning. This mode of rea-
soning starts from the existing knowledge stored as facts and continues until no
further conclusions can be drawn The engine checks the preconditions (LHS) of
rules to see which ones can be fired. Then actions in RHS are executed. Therefore,
the main drawback of this inference mode is that many rules may be executed that
have nothing to do with the established goal.

• Backward chaining is a reverse process to forward chaining and is called goal-
driven reasoning. In this mode the system has a goal (a hypothetical solution) and
the inference engine attempts to find the evidence to prove it with the help of the
facts stored within the fact base. Inference engine processes rules in a backward
manner (in comparison to the previous mode) i.e. from RHS to LHS, and search
for such rules that RHS matches to the desired goal. If LHS of a certain rule can
be proven to be true in terms of the facts then the goal is also proven. If not, then
the elements of LHS go to the list of goals and the entire process repeats.

In fact, sometimes amixedmode allows for the combination of forward and backward
inference modes.

Both of the inference modes can be applied to different kinds of problems. How-
ever, according to [21] forward chaining is a natural way to design expert systems
for analysis and interpretation. For example, Dendral, an expert system for deter-
mining the molecular structure of unknown soil, used forward chaining [22]. In turn,
the backward chaining expert systems are mostly used for diagnostic purposes. For

http://dx.doi.org/10.1007/978-3-319-66655-6_3


34 2 Knowledge Engineering with Rules

instance, Mycin, a medical expert system for diagnosing infectious blood diseases,
used backward chaining [23].

An inference task is a scenario of using rules that is performed by an infer-
ence engine working in a given inference mode. Thus, it is important to distinguish
between inference modes, like forward and backward chaining, and inference tasks.
Therefore, a given inference task can be performed in different inference modes. One
can introduce several inference tasks, such as:

• The final consequence inference task determines the evaluation of a given set of
rules in order to infer all possible conclusions based upon the existing facts and
the facts drawn during inference. Performing this task, the inference engine must
take the changes of the fact base (state) into account and reevaluate rules that can
be affected by these changes [21].

• The single-pass consequence inference task is similar to final consequence, but in
contrast to it, the inference engine does not track changes of the system’s state.
This ensures that the rules get evaluated against existing facts only one time and
then prevent them from being reevaluated.

• The specific-pass consequence inference task is, in turn, similar to a single-pass
consequence, but additionally it explicitly defines the order of rules in which they
must be executed.

• The consequence reduction inference task forces an inference engine to answer
a question if a given hypothesis can be proved to be true according to existing
facts. An inference engine tries to find such a sequence of rules that allows for the
expression of the hypothesis by means of the existing facts.

Now let us consider the most important inference algorithms.
A typical forward chaining inference process performed in RBS is an iterative

process consisting of the steps described below.

1. Match – search for all rules having satisfied their LHS.
2. Conflict set resolution – selection of rule for executing.
3. Action – invoking actions from the consequent part of the selected rule.
4. Return – performing the next iteration (return to the step 1).

The same process for backward chaining is analogous but it differs in direction of rule
processing [21]. Among these four steps, the first step is the bottleneck of inference
because it requires to match facts stored within the fact base to rules in order to
check if a given rule has satisfied their LHS or not. The implementation of the naive
algorithm involves iteration over all matching of the all combinations of facts to all
rules. Nevertheless, such an approach is inefficient and thus other algorithms have
been developed.

An important and now commonly used inference algorithm is Rete [24]. This
algorithm allows the naive approach to be avoided and makes the match step much
more efficient. It is based upon the two major ideas. The first one is related to
knowledge compilation where each knowledge base is compiled and the set of all
rules is transformed into so-called discrimination network that represents all the rules
in the form of directed and acyclic graph. The second idea is to store the information



2.2 Automated Inference with Rules 35

concerning facts satisfying a certain condition within a corresponding node. As a
result of this, operations performed during this step are limited to monitoring only
changes (adding or removing)made in the fact base.When such a change is observed,
it is passed through the network in order to identify rules having satisfied their LHS.

The idea of a discrimination network can also be found in other inference algo-
rithms like Treat [25] or Gator [26]. In comparison to Rete, Treat provides a
more efficientmemorymanagement because it does not store any redundant informa-
tion. In turn, Gator is the most general one, as it uses several optimization methods
for building a discrimination network. In particular cases they may take the forms
of networks used by Rete or Treat. Therefore, both of them are considered to be
special cases of Gator. More details on the comparisons of these algorithms can be
found in [27–29].

2.3 Structure of Rule Bases

A basic discussion of rule-based systems is most commonly focused on building
single rules, or constructing relatively small sets of rules. This is justified in simple
cases, or studies of rule extraction algorithms. However, in engineering practice the
size, structure, properties, and quality of such rule sets are very important. In fact,
larger rule sets should be more commonly referred to as “rule bases” as rules in such
a set are most often interrelated.

Structure on the Design Level

Relations of rules in a rule base can be expressed explicitly in rules. Examples
include rules for decision control, where the execution of certain rules explicitly
calls other rules. Moreover, there are cases of rewriting systems, where some rules
can be modified by others. Furthermore, rule sets can be explicitly partitioned into
groups operating in or in relation to given situations. Theremight be implicit relations
between rules. Probably the most common and important cases are rules that share
the same attributes. Even if such rules are not grouped together they could be related
to similar situations, or objects. What makes such cases even more complicated are
logical relations between such rules. This can result in contradicting or excluding
rules which can lead to an unexpected operation of the system. There are different
solutions to address these issues.

A simple solution, common in rule-based shells is the introduction of modular-
ization of the rule base.CLIPS offers functionality for organizing rules into so-called
modules. They allow for the restriction of access to their elements from other mod-
ules, and can be compared to global and local scoping in programming languages.
In CLIPS each module has its own pattern-matching network for rules and its own
agenda (rules to be fired). Jess provides a similar module mechanism that helps to
manage large rule bases. Modules provide a control mechanism: rules in a module
will fire only when this module has the focus, and only one module can have focus
at a time. In general, although any Jess rule can be activated at any time, only rules



36 2 Knowledge Engineering with Rules

in a module having focus will fire. Although this is a step towards introducing the
structure of the rule base, still all rules are checked against the facts. In certain cases
this mechanism can improve management of the rule base, as the large set of rules
can be partitioned into smaller ones. It can also have a positive impact upon the
performance of the inference process as not all of the rules need to be analyzed. A
similar approach was employed in the Drools system. However, as Drools moved
away from a CLIPS-like inference in large rule bases to a dedicated process engine,
it will be described in the subsequent section on inference.

Another approach is to introduce structure into the model of the knowledge base
during the design. Using visual representation methods such as decision tables can
simplify the grouping of rules sharing the same attributes [30]. A decision tree can
also be used to represent a groupof rules but emphasizing the inference process. There
exist hybrid representations such as XTT2 (eXtended Tabular Trees) that combine
tables with trees [31]. While tables group rules with the same attributes, a high level
inference network allows the inference process to be controlled. The tables can be
connected during the design process to denote relations between groups of rules.
These connections can be further used by the inference engine to optimize the infer-
ence process. For more details see [29]. In [32] a complete design and integration
approach for formalized rule-based systems was introduced. It is called Semantic
Knowledge Engineering (SKE) as it put emphasis on the proper interpretation of
rule based knowledge as well as on its integration with other software engineer-
ing paradigms. In the subsequent parts of this chapter we will briefly discuss how
inference control and integration are handled in SKE.

Improving Inference in Structured Rule Bases

The structuring of the rule base can be reflected during the inference process. CLIPS
modules allow for the restriction of access to their elements from other modules,
and can be compared to global and local scoping in other programming languages.
The modularization of the knowledge base helps managing rules, and improves the
efficiency of rule-based system execution. In CLIPS eachmodule has its own pattern-
matching network for its rules and its own agenda. When a run command is given,
the agenda of the module which is the current focus is executed. Rule execution
continues until another module becomes the current focus, no rules are left on the
agenda, or the return function is used from the RHS of a rule. Whenever a module
that was focused on runs out of rules on its agenda, the current focus is removed from
the focus stack and the next module on the focus stack becomes the current focus.
Before a rule executes, the current module is changed to the module in which the
executing rule is defined (the current focus). The current focus can be dynamically
switched in RHS of the rule with a focus command. A similar mechanism is present
in Jess.

TheDrools platform introducedRuleFlow tool. It is aworkflowandprocess engine
that allows for the advanced integration of processes and rules. It provides a graphical
interface for processes and rules modeling. Drools have a built-in functionality to
define the structure of the rule base which can determine the order of the rules
evaluation and execution. Rules can be grouped into a ruleflow-groups which defines



2.3 Structure of Rule Bases 37

the subset of rules that are evaluated and executed. The ruleflow-groups have a
graphical representation as the nodes on the ruleflow diagram. The ruleflow-groups
are connected with the links what determines the order of its evaluation. A ruleflow
diagram is a graphical description of a sequence of steps that the rule engine needs
to take, where the order is important.

More recently, Drools 5 moved from a dedicated flow control engine into the
integration of a rule-based reasoning system with a complete Business Process Man-
agement Systems (BPMS). In this case rule-based modules or subsystems can be
called arbitrarily by a high-level flow control mechanism. In this case it is a Business
Process engine jBPM. This approach to controlling the rule-based inference will be
described in the section regarding integration of RBS with other systems.

2.4 Knowledge Base Analysis

Knowledge-based systems are widely used in areas where high performance and
reliability are important. In some cases a failure of a such system may have serious
consequences. Therefore, it is crucial to ensure that the system will work correctly
in every possible situation.

Verification and validation have been discussed by many authors, including [33–
42]. Verification concerns proving correctness of the set of rules in terms of some
verifiable characteristics [43]. In fact features such as consistency, completeness,
and various features of correctness may be efficiently checked only by using formal
methods [15]. In turn, validation is related to checking if the system provides correct
answers to specific inputs. In other words, validation consists in assuring that the
system is sound and fits user requirements. Boehm [43] characterized the difference
as follows: “Verification is building the system right. Validation is building the right
system.”

Here, it is assumed that:

• Verification is a process aimed at checking if the system meets its constraints and
requirements (after Tepandi [41], Andert [33], and Nazareth [35]).

• Testing is a process which seeks to analyze system operation by comparing system
responses to known responses for special input data (after Tepandi [41]).

• Validation is a case of testing, aimed at checking if the system meets user require-
ments (after Tepandi [41]).

A comprehensive overview of this field has been presented by Vermesan in [44].
Moreover, a summary result of analysis techniques and tools is presented in an
online report by Wentworth et al. [45].

According to [46] verification and validation procedures of the system can be
understood as one of the following: anomaly detection, formal verification, parallel
use, rule base visualization to aid review, code review, testing. That study shows, that
verification of the rule based systems is dominated by testing and code review. This



38 2 Knowledge Engineering with Rules

approach highly depends on human skills, since an incorrectly written test may pro-
duce the wrong results. Formal verification and anomaly detection are not so widely
used despite the fact that these methods usually have strong logical foundations and
in most cases exceed the testing and debugging approach. These methods are able to
check the following characteristics of the rule base [47]:

• Redundancy – is knowledge specified in an efficient way, so that redundancy is
avoided, it includes identical rules, subsumed rules, equivalent rules, unusable
rules (those that are never fired).

• Inconsistency – is the knowledge specified within a rule base consistent, where
both internal, and external logical consistency, referring to the consistency of the
real world (model) can be considered, it includes ambiguous rules, conflicting,
ambivalent rules, logical inconsistency.

• Minimal representation – is specified knowledge in some minimal form, i.e. it
cannot be replaced by another, more efficient and more concise representation:
it includes reduction of rules, canonical reduction of rules, specific reduction of
rules, the elimination of unnecessary attributes.

• Completeness – is knowledge complete, can the system always produce the output,
it includes logical completeness, specific (physical) completeness, detection of
incompleteness, identification of missing rules.

• Determinism – is provided output unique and repeatable under the same input con-
ditions, it includes pairwise rule determinism, and complete system determinism,

• Optimality – is knowledge sufficient for producing the best available solutions.
It includes optimal form of individual rules, locally optimal solutions, optimal
knowledge covering, and optimal solutions.

According to a comparisonof existing verification tools in [48] one candrawa con-
clusion, that themain reasonwhy formal verification is not widely used among expert
system developers is that it requires formal knowledge representation. In fact, most
of these tools are usually based upon propositional or predicate logic.Melodia [49]
used propositional logic and a flat rule base. Clint [50], Cover [51], Prepare [52],
Sacco [53] used predicate logic and a flat rule base. Moreover, In- Depth [39]
introduces a hierarchical representation, Covadis [54] used simple production rules
language with a flat rule base, whereas Krust [55] used frames.

However, common expert system shells such as CLIPS, Jess or Drools do not
provide formal knowledge representation, so it is not possible to apply formal meth-
ods to these tools. Although there are some analysis tools that are dedicated to afore-
mentioned shells like CRSV-CLIPS [48, 56] for CLIPS,DroolsVerifier, their aim
is not to provide formal verification, but to offer a framework for writing tests.

Verification of knowledge in RBS is typically considered the last stage of the
design procedure [5]. It is assumed that it will be performed on a complete, specified
knowledge base; see the important works of Preece and Vermesan [44, 57, 58]. As
such it is costly and difficult. In this book we advocate approaches that introduce a
formalized description of rule base. As a result of these, formal verification of the
rule base is possible during its design.



2.4 Knowledge Base Analysis 39

Once designed and analyzed the rule base needs to be maintained. An important
and challenging aspect of maintenance includes the use of the same rule base in a
different system.This involves the possible re-codingof rules in another rule language
and it might be a challenging process. As it is one of the areas addressed in this book,
we will analyze it in much more detail in the following section.

2.5 Rule Interchange and Interoperability

Having a complete, possibly verified and validated system, it is desirable to ensure
that there is a method for sharing knowledge with other systems, representations
and tools. Such methods bring many significant advantages especially for knowl-
edge maintenance that becomes easier and more efficient. Some of them may be
summarized in the following way:

• Rapid development – as a result of efficient interoperabilitymethods, a new knowl-
edge base may be supplemented by already existing knowledge that can even be
modeled in different representation.

• Cross-representation knowledge engineering–knowledge canbemodeled andver-
ified by tools dedicated for different representation. This allows for the wider reuse
of already existing tools and prevents from the unnecessary development of new
ones.

• Heterogeneous knowledge bases – an intelligent systemmay use different sources/
pieces of knowledge that are translated into required representation on the fly. This
creates a great opportunity for collaborative methods for knowledge engineering.

In the classic approach, a RBS was considered as standalone i.e. the implemented
systemwas self-contained and was usually separated from other elements in its envi-
ronment. Today, the rule-basedknowledge representation found application in several
areas that are oriented towards collaboration and integration with external technolo-
gies. Together with the increasing number of rules application areas, the number of
different rule representations is also growing. The differences between these repre-
sentations ensure that rule-based knowledge cannot be easily shared among different
rule bases. Usually, the naive translation methods do not take rule base semantics
into account which leads to a semantic mismatch before and after translation. This
persistent problem is called rule interoperability problem and it has been known
since classic expert systems [21].

In general, themethodology of interoperabilitymust take two aspects into account:
syntax that is used for knowledge encoding and semantics.On each of these two levels
some problems can be identified, including ambiguous semantics, different expres-
siveness, and syntactic power. Over time, many different methods and approaches to
the knowledge interoperability problem were developed. Some of them are general-
purpose, i.e. aim to provide a framework for translation between many different
representations. Others are dedicated for a certain set of representations that share
similar assumptions and thus have similar semantics. The most important of these
are described below.



40 2 Knowledge Engineering with Rules

KIF

Knowledge Interchange Framework (KIF) [59] constitutes one of the first implemen-
tations of the formal knowledge interoperability approach that uses unified interme-
diate representation providing declarative semantics.KIFwas intended to be a formal
language for the translation of knowledge among disparate computer programs pro-
viding the possibility of precise definition of semantics. It was not limited only to
rules but also supports other representation techniques like frames, graphs, natural
language, etc. It is important to note that KIFwas not intended as a primary language
for interaction with human users (though it can be used for it). Different programs
could interact with their users in whatever forms that are most appropriate to their
applications. The formal definition (specification) of KIF is complicated. It provides
very complexmeta-model consisting of a large number of classes.Moreover, its com-
plexity led to very weak tool support and currently there are few tools that support
KIF even partially. In the past,KIFwas used in the context of classic expert systems.
A new implementation of KIF appeared as one of the dialects of CL called Common
Logic Interchange Format (CLIF) [60].

RIF

Rule Interchange Format (RIF) [61, 62] is a result of research conducted by Rule
Interchange Format Working Group. This group was established by the World Wide
Web Consortium (W3C) in 2005 to create a standard for exchanging rules among
rule systems, in particular among web rule engines. Although originally envisioned
by many as a rule layer for the Semantic Web, in reality the design of RIF is based
upon the observation that there are many rule languages in existence, and what it is
important to exchange rules between them. The approach taken by the group was
to design a family of languages, called dialects with rigorously specified syntax and
semantics of different rule systems. Currently RIF is part of the infrastructure for the
Semantic Web, along with SPARQL, RDF and OWL.

UnlikeCL,RIF dialects do not share the same expressiveness and semantics. Nev-
ertheless, it is assumed that all of them include RIF-Core dialect [63] which defines
anXML syntax for definite Horn rules without function symbols, i.e.Datalog, with
standard first-order semantics. Until now, the development of theRIF frameworkwas
focused on twokinds of dialects: (1) Logic-based dialects –Basic LogicDialect (RIF-
BLD) [64] and a subset of the RIF Core Dialect, they include languages that employ
some kind of logic, such as FOL (often restricted to Horn logic) or non-FOL under-
lying the various logic programming languages; (2) Dialects for rules with actions
– the Production Rule Dialect (RIF-PRD) [65]: it includes production rule systems,
such as Jess, Drools and JRules, as well as reactive (or event-condition-action)
rules, such as Reaction RuleML and XChange. Unfortunately, the RIF specification
provided by the W3C working group has several limitations and deficiencies that
makes RIF application difficult.3

3Lukichev shows that RIF does not specify guidelines regarding how to implement a transformation
from a source rule language into the RIF and, what is more, how to verify the correctness of already



2.5 Rule Interchange and Interoperability 41

PRR

Production Rule Representation (PRR) [68] is an OMG standard for production rule
representation that was developed as a response for Request For Proposals from
2002–2003 to address the need for a representation of production rules in UML

models (i.e. business rule modeling as part of a modeling process). It adopts the rule
classification scheme (supplied by the RuleML Initiative) and supports only pro-
duction ones. It provides theMOF-based meta-model and profile that are composed
of a core structure referred to as PRR Core and a non-normative abstract OCL-based
syntax for the expressions, defined as an extended PRR Core meta-model referred
to as PRR OCL [68]. PRR Core is a set of classes that enable the production of rules
and rule sets to be defined in a purely platform independent way without having to
specify OCL, in order to represent conditions and actions. As conditions and actions
are “opaque” and simply strings, it is suitable to support rule expressions in both
formal and informal way in order to be useful also for people without KE skills. This
expressiveness was reached by very general definition of production rule semantics.
This representation defines rule as the dynamic elements that allows for the chain-
ing state of the rule-based systems and provides operational semantics for rules, the
forward-chaining of production rules and rule sets.

RuleML

Rule Markup Language (RuleML) [69, 70] is defined by the RuleML Initiative.4

This initiative aims to develop an open, vendor neutral XML/RDF-based rule lan-
guage allowing for the exchange of rules between various systems including: distrib-
uted software components on the web, heterogeneous client-server systems found
within large corporations, etc. RuleML is intended to be used in Semantic Web
and this is why it offers XML-based language syntax for rules. In turn, the abstract
syntax of this language is specified by means of a version of Extended BNF, very
similar to EBNF notation used for XML. The foundation for the kernel of RuleML

is the Datalog (constructor-function-free) sub-language of Horn logic. Its expres-
siveness allows for the expression of both forward and backward-chaining rules in
XML. It also supports different kinds of rules: derivation rules, transformation rules,
reaction rules and production rules. The formal model of RuleML is comprehen-
sively described in [71]. RuleML, as a general rule interoperability format, can be
customized for various semantics of underlying rule languages that should be rep-
resented and translated. Although specific default semantics are always predefined
for each RuleML language, the intended semantics of a rule base can override it by
using explicit values for corresponding semantic attributes.

(Footnote 3 continued)
made translations [66]. In turn, in [67] Wang et al. indicate that, from the perspective of modeling,
RIF does not have meta-model to describe features of rules.
4See: http://wiki.ruleml.org.

http://wiki.ruleml.org


42 2 Knowledge Engineering with Rules

R2ML

REWERSE Rule Markup Language R2ML [72] was developed by the REWERSE
Project Working Group I1.5 It is an interoperability format for rules integrating
RuleMLwith the SWRL as well as theOCL. The main goal or R2ML is to provide a
method for: rule translation between different systems and tools; enriching ontologies
by rules; connecting different rule systems with R2ML-based tools for visualization,
verbalization, verification and validation. It supports four rule categories: derivation
rules, production rules, integrity rules and ECA/reaction rules. The concepts that
are used within rules can be defined in MOF/UML. R2ML was modeled using
Model-Driven Approach (MDA) and it is required to accommodate Semantic Web
by: web naming concepts, such as URIs and XML namespaces; the ontological
distinction between objects and data values; the datatype concepts of RDF and user-
defined datatypes. On the other hand, R2ML can be used as a concrete XML syntax
for Extended RDF, which extends the RDF(S) semantics. Similarly to RIF, R2ML

is based upon partial logic [73]. However, R2ML is supposed to be used as an
intermediate representation for rules and not as a reasoning formalism. Thus, there
is no efficient tool support for R2ML.

2.6 Architectures for Integration

Historically, rule-based systems were considered as stand alone tools. This meant
such a system was an independent software component (sometimes integrated into
hardware system). As such, it was fully responsible for processing input data, per-
forming processing, and then making the appropriate decision and ultimately pro-
ducing output data, or carrying out control actions. Therefore, with time in classic
RBS systems such as CLIPS, a number of additional libraries were created to sup-
port such an environment. However, today such an approach seems redundant, and
is rather rare. RBS are considered as software components, that have to be inte-
grated into a larger software environment using well-defined software engineering
approaches [6]. Therefore, here we provide a short account of different architectures
to integrate rule-based systems into a larger software environment.

The already mentioned classic approach with standalone systems can be consid-
ered a homogeneous one. As in such a case the RBS should be able to provide not just
the decision making, but also a vital part of the interfaces on the software runtime
level. An important aspect is in fact related to the rule language level. In this case,
the rule language should be powerful enough to program all of these features, as it
is the only language available for the system designer. This results in the design of
expressive rule languages like in the case of CLIPS with additional programming
libraries, or language extensions such as COOL [74].

An alternative approach is to restrict the role of the RBS only to decision making.
In this case, the remaining functionality is delegated to other systems or components.

5See: http://oxygen.informatik.tu-cottbus.de/rewerse-i1/.

http://oxygen.informatik.tu-cottbus.de/rewerse-i1/


2.6 Architectures for Integration 43

The RBS only need to posses interfaces allowing for lower-level integration. It also
operates as intelligentmiddleware, not a stand-alone system.This kind of architecture
can be described as heterogeneous.

Heterogeneous Integration Using MVC Design Pattern

The rule-based component can be then integrated with into larger software system
using some of the common software design patterns [75]. An example of such an
approach was previously proposed in [32]. It is related to bridging knowledge engi-
neering with software engineering (SE). Today software engineering faces a number
of challenges related to efficient and integrated design and implementation of com-
plex systems. Historically, when systems became more complex, the engineering
process became more and more declarative in order to model the systems in a more
comprehensive way. It made the design stage independent of programming lan-
guages, which resulted in a number of approaches. One of the best examples is the
MDA (Model-Driven Architecture) approach [76]. Since there is no direct “bridge”
between declarative design and sequential implementation, a substantial amount of
work is needed to turn a design into a running application. This problem is often
referred to as a semantic gap between a design and its implementation as has been
discussed by Mellor in [77]. It is worth noting that while the conceptual design can
sometimes be partially formally analyzed, the full formal analysis is impossible in
most cases. However, there is no way of assuring that even a fully formally correct
model would translate into a correct code into a programming language. Moreover,
if an application is automatically generated from a designed conceptual model then
any changes in the generated code have to be synchronized with the design. Another
issue is the common lack of separation between core software logic, interfaces, and
presentation layers.

Some of the methodologies e.g. the MDA, and the design approaches e.g. the
MVC (Model-View-Controller) [78] try to address this issue. The main goal is to
avoid semantic gaps, mainly the gap between the design and implementation. In
order to do so, the following elements should be developed: a rich and expressive
design method, a high-level runtime environment, and an effective design process.
Methodologies which embody all of these elements should eventually shorten the
development time, improve software quality, and transform the “implementation”
into the runtime-integration and introduce so-called “executable design”.

Using these ideas the heterogeneous integration of a RBS may be considered on
several levels:

• Runtime level: the application is composed of the rule-based model run by the
inference engine integrated into the external interfaces.

• Service level: the rule-based core is exposed to external applications using
anetwork-basedprotocol. This allows for anSOA(Service-OrientedArchitecture)-
like integration [79] where the rule-based logic is designed and deployed using an
embedded inference engine.

• Design level: integration considers a scenario, where the application has a clearly
identified logic-related part, which is designed using a visual design method for



44 2 Knowledge Engineering with Rules

rules (such as decision table, or decision trees), and then translated into a domain-
specific representation.

• Rule language level: in this case rule expressions can be mixed with another
programming language (most often Java). In this case both syntax and semantics
is mixed. However, this allows for an easy integration of rule-based code to be
easily integrated into the rich features of another programming environment (e.g.
Java).

An example of integration on the first three levels will be given in Sect. 9.3.

Integration of Rules and Business Process System

A specific case of heterogeneous integration of RBS with BPMS can also be con-
sidered. The Drools 5 platform encompasses several integrated modules including
Drools Expert and jBPM. The former is a business rules execution engine. The latter
is a fully-fledged BP execution engine. It executes business process models encoded
in Business Process Model and Notation (BPMN) [80]. This notation includes ded-
icated syntactic constructs, so-called rule tasks. As a result of these it is possible to
delegate the execution of the details of business process logic to a rule-bases sys-
tem. Practically it can be any system implemented in Drools. However, from the
design transparency perspective a reasonable approach is to connect only restricted
well-defined subsystems, or even single modules (tables).

Following the previously defined levels, such a scenario for integration is mainly
runtime-oriented. While proper design tools are currently not available for Drools,
with some extensions this integration can also be reflected on the design level. Prelim-
inary work in this direction was presented in [81], where a web design framework for
business processes with rules were presented. The Drools approach also allows for
service-level integration, as the whole runtime environment is web-enabled. Drools
supports the orchestration of web services using rules. The execution of such solu-
tions is supported by the runtime environment.

We provided new results in the area of integration, including a formalized model
for business process models with rules in [82]. This model will be discussed in
Chap.5. It allows for a more complete integration of rules and processes, both during
design and execution, as presented in Chap.5.

2.7 Summary

In this short chapter we provided an overview of important topics related to the
development of rule-based systems, commonly simply referred to as knowledge
engineering. Following classic textbooks [1, 2]we discussed the general phases of the
KE process [3–5]. We emphasized aspects that are non-trivial and are explored later
in this book. This includes knowledge base modeling with the use of visual methods.
During this phase formalization of the representation methods can be introduced.
Moreover,we discussed structuring of the rule base as an important aspect of complex

http://dx.doi.org/10.1007/978-3-319-66655-6_9
http://dx.doi.org/10.1007/978-3-319-66655-6_5
http://dx.doi.org/10.1007/978-3-319-66655-6_5


2.7 Summary 45

real-life systems. Furthermore, we identified knowledge interoperability as playing
a key role in the long-term maintenance of once acquired and modeled knowledge.
Finally we explored opportunities for integration of the RBS with other systems.

In the next chapter we will discuss selected applications of RBS. Thus we will
conclude the presentation of the important aspects of the state of the art in RBS
needed for the discussion of original results presented later. As today’s KBS are
mostly software based [83] we try to identify possible bridges with KE and SE. This
will provide a foundation for the subsequent parts of the book.

References

1. Guida, G., Tasso, C.: Design andDevelopment of Knowledge-Based Systems: FromLife Cycle
to Methodology. Wiley, New York (1995)

2. Gonzalez, A.J., Dankel, D.D.: The Engineering of Knowledge-Based Systems: Theory and
Practice. Prentice-Hall Inc, Upper Saddle River (1993)

3. Durkin, J.: Expert Systems: Design and Development. Macmillan, New York (1994)
4. Waterman, D.A.: A Guide to Expert Systems. Addison-Wesley Longman Publishing Co., Inc,

Boston (1985)
5. Liebowitz, J. (ed.): The Handbook of Applied Expert Systems. CRC Press, Boca Raton (1998)
6. Sommerville, I.: Software Engineering. International Computer Science, 7th edn. Pearson Edu-

cation Limited, Harlow (2004)
7. Hayes-Roth, F., Waterman, D.A., Lenat, D.B.: Building Expert Systems. Addison-Wesley

Longman Publishing Co., Inc, Boston (1983)
8. Buchanan, B.G., Shortliffe, E.H. (eds.): Rule-Based Expert Systems. Addison-Wesley Pub-

lishing Company, Reading (1985)
9. von Halle, B.: Business Rules Applied: Building Better Systems Using the Business Rules

Approach. Wiley, New York (2001)
10. Scott, A.C.: A Practical Guide to Knowledge Acquisition, 1st edn. Addison-Wesley Longman

Publishing Co., Inc, Boston (1991)
11. van Harmelen, F., Lifschitz, V., Porter, B. (eds.) Handbook of Knowledge Representation.

Elsevier Science, Amsterdam (2007)
12. Stefik, M.: Introduction to Knowledge Systems. Morgan Kaufmann Publishers, San Francisco

(1995)
13. Buchanan,B.G.,Wilkins,D.C.: Readings inKnowledgeAcquisition andLearning:Automating

the Construction and Improvement of Expert Systems.M.Kaufmann Publishers, San Francisco
(1993)

14. Debenham, J.: Knowledge Engineering: Unifying Knowledge Base and Database Design, 1st
edn. Springer Publishing Company, Incorporated, Berlin (2012)

15. Nalepa, G.J.: Languages and tools for rule modeling. In: Giurca, A., Gašević, D., Taveter, K.
(eds.) Handbook of Research on Emerging Rule-Based Languages and Technologies: Open
Solutions and Approaches, pp. 596–624. IGI Global, Hershey (2009)

16. Ligęza, A.: Logical Foundations for Rule-Based Systems. Springer, Berlin (2006)
17. Ben-Ari, M.: Mathematical Logic for Computer Science. Springer, London (2001)
18. Ignizio, J.P.: An Introduction to Model Driven Architecture. Applying MDA to Enterprise

Computing. David S. Frankel, Wiley Publishing, Inc., Indianapolis 2003 Expert Systems. The
Development and Implementation of Rule-Based Expert Systems. McGraw-Hill, New York
(1991)

19. Graham, I.: Business Rules Management and Service Oriented Architecture. Wiley, New York
(2006)



46 2 Knowledge Engineering with Rules

20. Jackson, P.: Introduction to Expert Systems, 3rd edn. Addison–Wesley, Boston (1999). ISBN
0-201-87686-8

21. Giarratano, J., Riley, G.: Expert Systems. Principles and Programming, 4th edn. Thomson
Course Technology, Boston (2005). ISBN 0-534-38447-1

22. Sutherland, G.R.: DENDRAL, a computer program for generating and filtering chemical struc-
tures. Report Memo AI-49, Stanford University, Department of Computer Science, Stanford,
California (1967)

23. Buchanan, B.G., Shortliffe, E.H.: Rule Based Expert Systems: The Mycin Experiments of the
Stanford Heuristic Programming Project. The Addison-Wesley Series in Artificial Intelligence.
Addison-Wesley Longman Publishing Co. Inc., Boston (1984)

24. Forgy, C.: Rete: a fast algorithm for the many patterns/many objects match problem. Artif.
Intell. 19(1), 17–37 (1982)

25. Miranker, D.P.: TREAT: a better match algorithm for AI production systems; long version.
Technical report 87-58, University of Texas (1987)

26. Hanson, E.N., Hasan, M.S.: Gator: an optimized discrimination network for active database
rule condition testing. Technical report 93-036, CIS Department University of Florida (1993)

27. Kaczor, K., Nalepa, G.J., Bobek, S.: Rule modularization and inference solutions – a synthetic
overview. In: Schneider, A. (ed.) Crossing Borders within ABC. Automation, Biomedical
Engineering and Computer Science: 55 IWK Internationales Wissenschaftliches Kolloquium:
International Scientific Colloquium, Illmenau, Germany, pp. 555–560 (2010)

28. Bobek, S., Kaczor, K., Nalepa, G.J.: Overview of rule inference algorithms for structured rule
bases. Gdansk Univ. Technol. Fac. ETI Ann. 18(8), 57–62 (2010)

29. Nalepa, G., Bobek, S., Ligęza, A., Kaczor, K.: Algorithms for rule inference in modularized
rule bases. In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning,
Programming, and Applications. Lecture Notes in Computer Science, vol. 6826, pp. 305–312.
Springer, Berlin (2011)

30. Vanthienen, J., Dries, E., Keppens, J.: Clustering knowledge in tabular knowledge bases. In:
ICTAI, pp. 88–95 (1996)

31. Nalepa, G.J., Ligęza, A., Kaczor, K.: Formalization and modeling of rules using the XTT2
method. Int. J. Artif. Intell. Tools 20(6), 1107–1125 (2011)

32. Nalepa,G.J.: SemanticKnowledgeEngineering.ARule-BasedApproach.WydawnictwaAGH,
Kraków (2011)

33. Andert, E.P.: Integrated knowledge-based system design and validation for solving problems
in uncertain environments. Int. J. Man-Mach. Stud. 36(2), 357–373 (1992)

34. Nguyen, T.A., Perkins, W.A., Laffey, T.J., Pecora, D.: Checking an expert systems knowledge
base for consistency and completeness. In: IJCAI, pp. 375–378 (1985)

35. Nazareth, D.L.: Issues in the verification of knowledge in rule-based systems. Int. J.Man-Mach.
Stud. 30(3), 255–271 (1989)

36. Preece, A.D.: Verification, validation, and test of knowledge-based systems. AI Mag. 13(4),
77 (1992)

37. Preece, A.D.: A new approach to detecting missing knowledge in expert system rule bases. Int.
J. Man-Mach. Stud. 38(4), 661–688 (1993)

38. Preece, A.D., Shinghal, R.: Foundation and application of knowledge base verification. Int. J.
Intell. Syst. 9(8), 249–269 (1994)

39. Meseguer, P.: Incremental verification of rule-based expert systems. In: Proceedings of the
10th European Conference on Artificial Intelligence. ECAI’92. Wiley, New York, NY, USA,
pp. 840–844 (1992)

40. Suwa,M., Scott, C.A., Shortliffe, E.H.: Completeness and consistency in rule-based expert sys-
tem.Rule-BasedExpert Systems, pp. 159–170.Addison-WesleyPublishingCompany,Reading
(1985)

41. Tepandi, J.: Verification, testing, and validation of rule-based expert systems. In: Proceedings
of the 11-th IFAC World Congress, pp. 162–167 (1990)



References 47

42. Szpyrka, M.: Design and analysis of rule-based systems with adder designer. In: Cotta, C.,
Reich, S., Schaefer, R., Ligęza, A. (eds.) Knowledge-Driven Computing: Knowledge Engi-
neering and Intelligent Computations. Studies in Computational Intelligence, vol. 102, pp.
255–271. Springer, Berlin (2008)

43. Boehm, B.W.: Verifying and validating software requirements and design specifications. IEEE
Softw. 1(1), 75–88 (1984)

44. Vermesan, A.I., Coenen, F. (eds.) Validation and Verification of Knowledge Based Systems.
Theory, Tools and Practice. Kluwer Academic Publisher, Boston (1999)

45. Wentworth, J.A., Knaus, R., Aougab, H.: Verification, Validation and Evaluation of Expert
Systems. World Wide Web Electronic Publication. http://www.tfhrc.gov/advanc/vve/cover.
htm

46. Zacharias, V.: Development and verification of rule based systems – a survey of developers.
In: Proceedings of the International Symposium on Rule Representation, Interchange and
Reasoning on the Web. RuleML’08. Springer, Berlin, pp. 6–16 (2008)

47. Ligęza, A., Nalepa, G.J.: Rules verification and validation. In: Giurca, A., Gašević, D., Taveter,
K. (eds.) Handbook of Research on Emerging Rule-Based Languages and Technologies: Open
Solutions and Approaches, pp. 273–301. IGI Global, Hershey (2009)

48. Tsai, W.T., Vishnuvajjala, R., Zhang, D.: Verification and validation of knowledge-based sys-
tems. IEEE Trans. Knowl. Data Eng. 11, 202–212 (1999)

49. Charles, E., Dubois, O.: Melodia: logical methods for checking knowledge bases. In: Ayel, M.,
Laurent, J.P. (eds.) Validation, Verification and Test of Knowledge-Based Systems, pp. 95–105.
Wiley, New York (1991)

50. De Raedt, L., Sablon, G., Bruynooghe, M.: Using interactive concept-learning for knowledge
base validation and verification. In: Ayel, M., Laurent, J. (eds.) Validation, Verification and
Testing of Knowledge Based Systems, pp. 177–190. Wiley, New York (1991)

51. Preece, A.D., Shinghal, R., Batarekh, A.: Principles and practice in verifying rule-based sys-
tems. Knowl. Eng. Rev. 7(02), 115–141 (1992)

52. Zhang, D., Nguyen, D.: Prepare: a tool for knowledge base verification. IEEE Trans. Knowl.
Data Eng. 6(6), 983–989 (1994)

53. Ayel, M., Laurent, J.P.: Sacco-Sycojet: two different ways of verifying knowledge-based sys-
tems. In: Ayel, M., Laurent, J.P. (eds.) Validation, Verification and Test of Knowledge-Based
Systems, pp. 63–76. Wiley, New York (1991)

54. Rousset, M.C.: On the consistency of knowledge bases: the covadis system. In: ECAI, pp.
79–84 (1988)

55. Craw, S., Sleeman, D.H.: Automating the refinement of knowledge-based systems. In: ECAI,
pp. 167–172 (1990)

56. Culbert, S.: Expert systemverifications andvalidation. In: Proceedings ofFirstAAAIWorkshop
on V,V and Testing (1988)

57. Preece, A.D.: A new approach to detecting missing knowledge in expert system rule bases. Int.
J. Man-Mach. Stud. 38, 161–181 (1993)

58. Vermesan, A.: Foundation and application of expert system verification and validation. The
Handbook of Applied Expert Systems. CRC Press, Boca Raton (1997)

59. Genesereth, M.R., Fikes, R.E.: Knowledge interchange format version 3.0 reference manual
(1992)

60. Delugach, H.: ISO/IEC 24707 information technology–common logic (CL) – A framework for
a family of logic-based languages. The formally adopted ISO specification (2007)

61. Kifer, M., Boley, H.: RIF overview. W3C working draft, W3C (2009). http://www.w3.org/TR/
rif-overview

62. Kifer, M.: Rule interchange format: the framework. In: Calvanese, D., Lausen, G. (eds.) Web
Reasoning andRule Systems, Second International Conference, RR2008,Karlsruhe,Germany,
October 31–November 1, 2008. Proceedings. Lecture Notes in Computer Science, vol. 5341,
pp. 1–11. Springer (2008)

63. Paschke, A., Reynolds, D., Hallmark, G., Boley, H., Kifer, M., Polleres, A.: RIF core
dialect. Candidate recommendation, W3C (2009). http://www.w3.org/TR/2009/CR-rif-core-
20091001/

http://www.tfhrc.gov/advanc/vve/cover.htm
http://www.tfhrc.gov/advanc/vve/cover.htm
http://www.w3.org/TR/rif-overview
http://www.w3.org/TR/rif-overview
http://www.w3.org/TR/2009/CR-rif-core-20091001/
http://www.w3.org/TR/2009/CR-rif-core-20091001/


48 2 Knowledge Engineering with Rules

64. Kifer, M., Boley, H.: RIF basic logic dialect. Candidate recommendation, W3C (2009). http://
www.w3.org/TR/2009/CR-rif-bld-20091001/

65. Hallmark, G., Paschke, A., de Sainte Marie, C.: RIF production rule dialect. Candidate recom-
mendation, W3C (2009). http://www.w3.org/TR/2009/CR-rif-prd-20091001/

66. Lukichev, S.: Towards rule interchange and rule verification. Ph.D. thesis, Brandenburg Uni-
versity of Technology (2010) urn:nbn:de:kobv:co1-opus-20772. http://d-nb.info/1013547209

67. Wang, X., Ma, Z.M., Zhang, F., Yan, L.: RIF centered rule interchange in the semantic web.
In: Bringas, P.G., Hameurlain, A., Quirchmayr, G. (eds.) Database and Expert Systems Appli-
cations, 21st International Conference, DEXA 2010, Bilbao, Spain, August 30–September 3,
2010, Proceedings, Part I. LectureNotes inComputer Science, vol. 6261, pp. 478–486. Springer
(2010)

68. OMG: Production rule representation (OMG PRR) version 1.0 specification. Technical report
formal/2009-12-01, Object Management Group (2009). http://www.omg.org/spec/PRR/1.0

69. Boley, H., Paschke, A., Shafiq, O.: RuleML 1.0: the overarching specification of web rules. In:
Dean, M., Hall, J., Rotolo, A., Tabet, S. (eds.) SemanticWeb Rules - International Symposium,
RuleML 2010, Washington, DC, USA, 21–23 October 2010. Proceedings. Lecture Notes in
Computer Science, vol. 6403, pp. 162–178. Springer (2010)

70. Boley, H., Tabet, S.,Wagner, G.: Design rationale for RuleML: amarkup language for semantic
web rules. In: Cruz, I.F., Decker, S., Euzenat, J., McGuinness, D.L. (eds.) Proceedings of
SWWS’01, The first Semantic Web Working Symposium, Stanford University, California,
USA, July 30–August 1, 2001, pp. 381–401 (2001)

71. Wagner, G., Antoniou, G., Tabet, S., Boley, H.: The abstract syntax of RuleML - towards a
general web rule language framework. Web Intell. IEEE Comput. Soc. 628–631 (2004)

72. Wagner, G., Giurca, A., Lukichev, S.: R2ml: a general approach for marking up rules. In:
Bry, F., Fages, F., Marchiori, M., Ohlbach, H. (eds.) Principles and Practices of Semantic Web
Reasoning, Dagstuhl Seminar Proceedings 05371 (2005)

73. Herre, H., Jaspars, J.O.M.,Wagner, G.: Partial logics with two kinds of negation as a foundation
for knowledge-based reasoning. Centrum voorWiskunde en Informatica (CWI) 158, 35 (1995)

74. Giarratano, J.C., Riley, G.D.: Expert Systems. Thomson, Toronto (2005)
75. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns, 1st edn. Addison-Wesley

Publishing Company, Reading (1995)
76. Miller, J., Mukerji, J.: MDA guide version 1.0.1. OMG (2003)
77. Mellor, S.J., Balcer, M.J.: Executable UML: A Foundation for Model Driven Architecture, 1st

edn. Addison-Wesley Professional, Boston (2002)
78. Burbeck, S.: Applications programming in smalltalk-80(TM): How to use model-view-

controller (MVC). Technical report, Department of Computer Science, University of Illinois,
Urbana-Champaign (1992)

79. Bieberstein, N., Bose, S., Fiammante, M., Jones, K., Shah, R.: Service-Oriented Architecture
(SOA) Compass: Business Value, Planning, and Enterprise Roadmap. IBM Press, Indianapolis
(2006)

80. OMG: Business process model and notation (BPMN): version 2.0 specification. Technical
report formal/2011-01-03, Object Management Group (2011)

81. Kluza, K., Kaczor, K., Nalepa, G.J.: Enriching business processes with rules using the Oryx
BPMN editor. In: Rutkowski, L., et al. (eds.) Artificial Intelligence and Soft Computing: 11th
International Conference, ICAISC 2012: Zakopane, Poland, April 29–May 3, 2012. Lecture
Notes in Artificial Intelligence, vol. 7268, pp. 573–581. Springer (2012)

82. Kluza, K., Nalepa, G.J.: Business processes integratedwith business rules, F.M. Inf. Syst. Front.
(2016) submitted

83. Guida, G., Lamperti, G., Zanella, M.: Software Prototyping in Data and Knowledge Engineer-
ing. Kluwer Academic Publishers, Norwell (1999)

http://www.w3.org/TR/2009/CR-rif-bld-20091001/
http://www.w3.org/TR/2009/CR-rif-bld-20091001/
http://www.w3.org/TR/2009/CR-rif-prd-20091001/
http://d-nb.info/1013547209
http://www.omg.org/spec/PRR/1.0


http://www.springer.com/978-3-319-66654-9


	2 Knowledge Engineering with Rules
	2.1 Knowledge Acquisition and Rule Base Modeling
	2.2 Automated Inference with Rules
	2.3 Structure of Rule Bases
	2.4 Knowledge Base Analysis
	2.5 Rule Interchange and Interoperability
	2.6 Architectures for Integration
	2.7 Summary
	References


