Contents – Part II

Optical Imaging

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell Lineage Tracing in Lens-Free Microscopy Videos</td>
<td>3</td>
</tr>
<tr>
<td>Markus Rempfler, Sanjeev Kumar, Valentin Stierle, Philipp Paulitschke, Bjoern Andres, and Bjoern H. Menze</td>
<td></td>
</tr>
<tr>
<td>Separation of Transmitted Light and Scattering Components in Transmitted Microscopy</td>
<td>12</td>
</tr>
<tr>
<td>Mihoko Shimano, Ryoma Bise, Yinqiang Zheng, and Imari Sato</td>
<td></td>
</tr>
<tr>
<td>Neuron Segmentation Using Deep Complete Bipartite Networks</td>
<td>21</td>
</tr>
<tr>
<td>Jianxu Chen, Sreya Banerjee, Abhinav Grama, Walter J. Scheirer, and Danny Z. Chen</td>
<td></td>
</tr>
<tr>
<td>Cell Encoding for Histopathology Image Classification</td>
<td>30</td>
</tr>
<tr>
<td>Xiaoshuang Shi, Fuyong Xing, Yuanpu Xie, Hai Su, and Lin Yang</td>
<td></td>
</tr>
<tr>
<td>Endoscopic Depth Measurement and Super-Spectral-Resolution Imaging</td>
<td>39</td>
</tr>
<tr>
<td>Jianyu Lin, Neil T. Clancy, Yang Hu, Ji Qi, Taran Tatla, Danail Stoyanov, Lena Maier-Hein, and Daniel S. Elson</td>
<td></td>
</tr>
<tr>
<td>Computational Immunohistochemistry: Recipes for Standardization of Immunostaining</td>
<td>48</td>
</tr>
<tr>
<td>Nuri Murat Arar, Pushpak Pati, Aditya Kashyap, Anna Fomitcheva Khartchenko, Orcun Goksel, Govind V. Kaigala, and Maria Gabrani</td>
<td></td>
</tr>
<tr>
<td>Two-Stream Bidirectional Long Short-Term Memory for Mitosis Event Detection and Stage Localization in Phase-Contrast Microscopy Images</td>
<td>56</td>
</tr>
<tr>
<td>Yunxiang Mao and Zhaozheng Yin</td>
<td></td>
</tr>
<tr>
<td>Refocusing Phase Contrast Microscopy Images</td>
<td>65</td>
</tr>
<tr>
<td>Liang Han and Zhaozheng Yin</td>
<td></td>
</tr>
<tr>
<td>Semi-supervised Segmentation of Optic Cup in Retinal Fundus Images Using Variational Autoencoder</td>
<td>75</td>
</tr>
<tr>
<td>Suman Sedai, Dwarikanath Mahapatra, Sajini Hewavitharanage, Stefan Maetschke, and Rahil Garnavi</td>
<td></td>
</tr>
<tr>
<td>QuaSI: Quantile Sparse Image Prior for Spatio-Temporal Denoising of Retinal OCT Data</td>
<td>83</td>
</tr>
<tr>
<td>Franziska Schirrmacher, Thomas Köhler, Lennart Husvogt, James G. Fujimoto, Joachim Hornegger, and Andreas K. Maier</td>
<td></td>
</tr>
</tbody>
</table>
Fast Background Removal Method for 3D Multi-channel Deep Tissue Fluorescence Imaging ... 92
Chenchen Li, Xiaowei Li, Hongji Cao, He Jiang, Xiaotie Deng, Danny Z. Chen, Lin Yang, and Zhifeng Shao

Fast Estimation of Haemoglobin Concentration in Tissue Via Wavelet Decomposition ... 100
Geoffrey Jones, Neil T. Clancy, Xiaofei Du, Maria Robu, Simon Arridge, Daniel S. Elson, and Danail Stoyanov

Efficient Reconstruction of Holographic Lens-Free Images by Sparse Phase Recovery ... 109
Benjamin D. Haeffele, Richard Stahl, Geert Vanmeerebeeck, and René Vidal

Quality Assessment of Retinal Hyperspectral Images Using SURF and Intensity Features ... 118
Faten M’hiri, Claudia Chevrefils, and Jean-Philippe Sylvestre

Isotropic Reconstruction of 3D Fluorescence Microscopy Images Using Convolutional Neural Networks .. 126
Martin Weigert, Loic Royer, Florian Jug, and Gene Myers

Deep Learning for Isotropic Super-Resolution from Non-isotropic 3D Electron Microscopy .. 135
Larissa Heinrich, John A. Bogovic, and Stephan Saalfeld

Histological Detection of High-Risk Benign Breast Lesions from Whole Slide Images ... 144
Akif Burak Tosun, Luong Nguyen, Nathan Ong, Olga Navolotskaia, Gloria Carter, Jeffrey L. Fine, D. Lansing Taylor, and S. Chakra Chennubhotla

Accurate Correspondence of Cone Photoreceptor Neurons in the Human Eye Using Graph Matching Applied to Longitudinal Adaptive Optics Images ... 153
Jianfei Liu, HaeWon Jung, and Johnny Tam

Airway and Vessel Analysis

Active Learning and Proofreading for Delineation of Curvilinear Structures ... 165
Agata Mosinska, Jakub Tarnawski, and Pascal Fua

Tracking the Aortic Lumen Geometry by Optimizing the 3D Orientation of Its Cross-sections .. 174
Luis Alvarez, Agustín Trujillo, Carmelo Cuenca, Esther González, Julio Esclarín, Luis Gomez, Luis Mazorra, Miguel Alemán-Flores, Pablo G. Tahoces, and José M. Carreira
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>BRANCH:Bifurcation Recognition for Airway Navigation based on structural characteristics</td>
<td>182</td>
</tr>
<tr>
<td>Mali Shen, Stamatia Giannarou, Pallav L. Shah, and Guang-Zhong Yang</td>
<td></td>
</tr>
<tr>
<td>Anatomy-Driven Modelling of Spatial Correlation for Regularisation of Arterial Spin Labelling Images</td>
<td>190</td>
</tr>
<tr>
<td>Tracking and Segmentation of the Airways in Chest CT Using a Fully Convolutional Network</td>
<td>198</td>
</tr>
<tr>
<td>Qier Meng, Holger R. Roth, Takayuki Kitasaka, Masahiro Oda, Junji Ueno, and Kensaku Mori</td>
<td></td>
</tr>
<tr>
<td>Automatic Labeling of Vascular Structures with Topological Constraints via HMM</td>
<td>208</td>
</tr>
<tr>
<td>Xingce Wang, Yue Liu, Zhongke Wu, Xiao Mou, Mingquan Zhou, Miguel A. González Ballester, and Chong Zhang</td>
<td></td>
</tr>
<tr>
<td>Biomechanical Patient-Specific Model of the Respiratory System Based on 4D CT Scans and Controlled by Personalized Physiological Compliance</td>
<td>216</td>
</tr>
<tr>
<td>Matthieu Giroux, Hamid Ladjal, Michael Beuve, and Behzad Shariat</td>
<td></td>
</tr>
<tr>
<td>CT Image Enhancement for Feature Detection and Localization</td>
<td>224</td>
</tr>
<tr>
<td>Pietro Nardelli, James C. Ross, and Raúl San José Estépar</td>
<td></td>
</tr>
<tr>
<td>Information Theoretic Measurement of Blood Flow Complexity in Vessels and Aneurysms: Interlacing Complexity Index</td>
<td>233</td>
</tr>
<tr>
<td>Jose M. Pozo, Arjan J. Geers, and Alejandro F. Frangi</td>
<td></td>
</tr>
<tr>
<td>Globally-Optimal Anatomical Tree Extraction from 3D Medical Images Using Pictorial Structures and Minimal Paths</td>
<td>242</td>
</tr>
<tr>
<td>Zahra Mirikharaji, Mengliu Zhao, and Ghassan Hamarneh</td>
<td></td>
</tr>
</tbody>
</table>

Motion and Cardiac Analysis

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-supervised Learning for Network-Based Cardiac MR Image Segmentation</td>
<td>253</td>
</tr>
<tr>
<td>Wenjia Bai, Ozan Oktay, Matthew Sinclair, Hideaki Suzuki, Martin Rajchl, Giacomo Tarroni, Ben Glocker, Andrew King, Paul M. Matthews, and Daniel Rueckert</td>
<td></td>
</tr>
<tr>
<td>A Localized Statistical Motion Model as a Reproducing Kernel for Non-rigid Image Registration</td>
<td>261</td>
</tr>
<tr>
<td>Christoph Jud, Alina Giger, Robin Sandkühler, and Philippe C. Cattin</td>
<td></td>
</tr>
</tbody>
</table>
Efficient Deformable Motion Correction for 3-D Abdominal MRI Using Manifold Regression .. 270

Xin Chen, Daniel R. Balfour, Paul K. Marsden, Andrew J. Reader, Claudia Prieto, and Andrew P. King

Flow Network Based Cardiac Motion Tracking Leveraging Learned Feature Matching .. 279

Automatic 3D Cardiovascular MR Segmentation with Densely-Connected Volumetric ConvNets .. 287

Lequan Yu, Jie-Zhi Cheng, Qi Dou, Xin Yang, Hao Chen, Jing Qin, and Pheng-Ann Heng

Predicting Slice-to-Volume Transformation in Presence of Arbitrary Subject Motion .. 296

Benjamin Hou, Amir Alansary, Steven McDonagh, Alice Davidson, Mary Rutherford, Jo V. Hajnal, Daniel Rueckert, Ben Glocker, and Bernhard Kainz

Detection and Characterization of the Fetal Heartbeat in Free-hand Ultrasound Sweeps with Weakly-supervised Two-streams Convolutional Networks .. 305

Yuan Gao and J. Alison Noble

Retrospective Head Motion Estimation in Structural Brain MRI with 3D CNNs .. 314

Juan Eugenio Iglesias, Garikoitz Lerma-Usabiaga, Luis C. Garcia-Peraza-Herrera, Sara Martinez, and Pedro M. Paz-Alonso

Learning-Based Spatiotemporal Regularization and Integration of Tracking Methods for Regional 4D Cardiac Deformation Analysis .. 323

Allen Lu, Maria Zontak, Nripesh Parajuli, John C. Stendahl, Nabil Boutagy, Melissa Eberle, Imran Alkhalil, Matthew O’Donnell, Albert J. Sinusas, and James S. Duncan

Fully Automated Segmentation-Based Respiratory Motion Correction of Multiplanar Cardiac Magnetic Resonance Images for Large-Scale Datasets .. 332

Matthew Sinclair, Wenjia Bai, Esther Puyol-Antón, Ozan Oktay, Daniel Rueckert, and Andrew P. King

Temporal HeartNet: Towards Human-Level Automatic Analysis of Fetal Cardiac Screening Video .. 341

Weilin Huang, Christopher P. Bridge, J. Alison Noble, and Andrew Zisserman
Longitudinal Analysis Using Personalised 3D Cardiac Models
with Population-Based Priors: Application to Paediatric Cardiomyopathies . . 350
Roch Mollero, Hervé Delingette, Manasi Datar, Tobias Heimann,
Jakob A. Hauser, Dilveer Panesar, Alexander Jones, Andrew Taylor,
Marcus Kelm, Titus Kuehne, Marcello Chinali, Gabriele Rinelli,
Nicholas Ayache, Xavier Pennec, and Maxime Sermesant

Temporal Interpolation of Abdominal MRIs Acquired
During Free-Breathing . 359
Neerav Karani, Christine Tanner, Sebastian Kozerke,
and Ender Konukoglu

Intraoperative Organ Motion Models with an Ensemble
of Conditional Generative Adversarial Networks . 368
Yipeng Hu, Eli Gibson, Tom Vercauteren, Hashim U. Ahmed,
Mark Emberton, Caroline M. Moore, J. Alison Noble,
and Dean C. Barratt

CardiacNET: Segmentation of Left Atrium and Proximal Pulmonary
Veins from MRI Using Multi-view CNN . 377
Aliasghar Mortazi, Rashed Karim, Kawal Rhode, Jeremy Burt,
and Ulas Bagci

Analysis of Periodicity in Video Sequences Through Dynamic
Linear Modeling . 386
A. Jonathan McLeod, Dante P.I. Capaldi, John S.H. Baxter,
Grace Parraga, Xiongbiao Luo, and Terry M. Peters

Tumor Processing

Groupwise Registration of MR Brain Images Containing Tumors
via Spatially Constrained Low-Rank Based Image Recovery 397
Zhenyu Tang, Yue Cui, and Bo Jiang

Deep Correlational Learning for Survival Prediction
from Multi-modality Data . 406
Jiawen Yao, Xinliang Zhu, Feiyun Zhu, and Junzhou Huang

Compressed Sensing on Multi-pinhole Collimator SPECT Camera
for Sentinel Lymph Node Biopsy . 415
Carlo Seppi, Uri Nahum, Peter A. von Niederhäusern, Simon Pezold,
Michael Rissi, Stephan K. Haerle, and Philippe C. Cattin

Personalized Pancreatic Tumor Growth Prediction via Group Learning . . . 424
Ling Zhang, Le Lu, Ronald M. Summers, Electron Kebebew,
and Jianhua Yao
Boundary-Aware Fully Convolutional Network for Brain Tumor Segmentation .. 433
Haocheng Shen, Ruixuan Wang, Jianguo Zhang, and Stephen J. McKenna

Field Effect Induced Organ Distension (FOrge) Features Predicting Biochemical Recurrence from Pre-treatment Prostate MRI 442
Soumya Ghose, Rakesh Shiradkar, Mirabela Rusu, Jhimli Mitra, Rajat Thawani, Michael Feldman, Amar Gupta, Andrei Purysko, Lee Ponsky, and Anant Madabhushi

Multi-label Inductive Matrix Completion for Joint MGMT and IDH1 Status Prediction for Glioma Patients .. 450
Lei Chen, Han Zhang, Kim-Han Thung, Luyan Liu, Junfeng Lu, Jinsong Wu, Qian Wang, and Dinggang Shen

Radiographic-Deformation and Textural Heterogeneity (r-DepTH): An Integrated Descriptor for Brain Tumor Prognosis .. 459
Prateek Prasanna, Jhimli Mitra, Niha Beig, Sasan Partovi, Gagandeep Singh, Marco Pinho, Anant Madabhushi, and Pallavi Tiwari

RADIomic Spatial TexturAl descripTor (RADISTAT): Characterizing Intra-tumoral Heterogeneity for Response and Outcome Prediction 468
Jacob Antunes, Prateek Prasanna, Anant Madabhushi, Pallavi Tiwari, and Satish Viswanath

Planning and Simulation for Medical Interventions

Locally Affine Diffeomorphic Surface Registration for Planning of Metopic Craniosynostosis Surgery .. 479
Antonio R. Porras, Beatriz Paniagua, Andinet Enquobahrie, Scott Ensel, Hina Shah, Robert Keating, Gary F. Rogers, and Marius George Linguraru

A Time Saver: Optimization Approach for the Fully Automatic 3D Planning of Forearm Osteotomies .. 488
Fabio Carrillo, Lazaros Vlachopoulos, Andreas Schweizer, Ladislav Nagy, Jess Snedeker, and Philipp Fürnstahl

DARWIN: Deformable Patient Avatar Representation With Deep Image Network .. 497
Vivek Singh, Kai Ma, Birgi Tamersoy, Yao-Jen Chang, Andreas Wimmer, Thomas O’Donnell, and Terrence Chen
Simultaneous Recognition and Pose Estimation of Instruments in Minimally Invasive Surgery

Thomas Kurmann, Pablo Marquez Neila, Xiaofei Du, Pascal Fua, Danail Stoyanov, Sebastian Wolf, and Raphael Sznitman

A Comparative Study of Breast Surface Reconstruction for Aesthetic Outcome Assessment

René M. Lacher, Francisco Vasconcelos, David C. Bishop, Norman R. Williams, Mohammed Keshtgar, David J. Hawkes, John H. Hipwell, and Danail Stoyanov

DejaVu: Intra-operative Simulation for Surgical Gesture Rehearsal

Nazim Haouchine, Danail Stoyanov, Frederick Roy, and Stephane Cotin

An Optimal Control Approach for High Intensity Focused Ultrasound Self-Scanning Treatment Planning

Nadia Möri, Laura Gui, Christoph Jud, Orane Lorton, Rares Salomir, and Philippe C. Cattin

A Mixed-Reality Approach to Radiation-Free Training of C-arm Based Surgery

Philipp Stefan, Séverine Habert, Alexander Winkler, Marc Lazarovici, Julian Füremetz, Ulrich Eck, and Nassir Navab

Image-Driven Stochastic Identification of Boundary Conditions for Predictive Simulation

Igor Peterlik, Nazim Haouchine, Lukáš Ručka, and Stéphane Cotin

Toward Computer-Assisted Planning for Interstitial Laser Ablation of Malignant Brain Tumors Using a Tubular Continuum Robot

Josephine Granna, Arya Nabavi, and Jessica Burgner-Kahrs

Providing Effective Real-Time Feedback in Simulation-Based Surgical Training

Xingjun Ma, Sudanthi Wijewickrema, Yun Zhou, Shuo Zhou, Stephen O’Leary, and James Bailey

Interventional Imaging and Navigation

Fully Automatic and Real-Time Catheter Segmentation in X-Ray Fluoroscopy

Pierre Ambrosini, Daniel Ruijters, Wiro J. Niessen, Adriaan Moelker, and Theo van Walsum

Deep Neural Networks Predict Remaining Surgery Duration from Cholecystectomy Videos

Ivan Aksamentov, Andru Putra Twinanda, Didier Mutter, Jacques Marescaux, and Nicolas Padoy
UV Exposed Optical Fibers with Frequency Domain Reflectometry for Device Tracking in Intra-arterial Procedures .. 594
 Francois Parent, Maxime Gerard, Raman Kashyap, and Samuel Kadoury

Real-Time 3D Ultrasound Reconstruction and Visualization in the Context of Laparoscopy ... 602
 Uditha L. Jayarathne, John Moore, Elvis C.S. Chen, Stephen E. Pautler, and Terry M. Peters

Improving Needle Detection in 3D Ultrasound Using Orthogonal-Plane Convolutional Networks ... 610
 Arash Pourtaherian, Farhad Ghavazian Zanjani, Svitlana Zinger, Nenad Mihajlovic, Gary Ng, Hendrikus Korsten, and Peter de With

Motion-Compensated Autonomous Scanning for Tumour Localisation Using Intraoperative Ultrasound .. 619
 Lin Zhang, Menglong Ye, Stamatia Giannarou, Philip Pratt, and Guang-Zhong Yang

Deep Learning for Sensorless 3D Freehand Ultrasound Imaging .. 628
 Raphael Prevost, Mehrdad Salehi, Julian Sprung, Alexander Ladikos, Robert Bauer, and Wolfgang Wein

Ultrasonic Needle Tracking with a Fibre-Optic Ultrasound Transmitter for Guidance of Minimally Invasive Fetal Surgery 637
 Wenfeng Xia, Sacha Noimark, Sebastien Ourselin, Simeon J. West, Malcolm C. Finlay, Anna L. David, and Adrien E. Desjardins

Learning CNNs with Pairwise Domain Adaption for Real-Time 6DoF Ultrasound Transducer Detection and Tracking from X-Ray Images 646
 Jiannan Zheng, Shun Miao, and Rui Liao

An Approach for Needle Based Optical Coherence Elastography Measurements .. 655
 Sarah Latus, Christoph Otte, Matthias Schlüter, Josua Rehra, Kevin Bizon, Hinnerk Schulz-Hildebrandt, Thore Saathoff, Gereon Hüttmann, and Alexander Schlaefer

Concurrent Segmentation and Localization for Tracking of Surgical Instruments .. 664
 Iro Laina, Nicola Rieke, Christian Rupprecht, Josué Page Vizcaíno, Abouzar Eslami, Federico Tombari, and Nassir Navab

Surgical Soundtracks: Towards Automatic Musical Augmentation of Surgical Procedures .. 673
 Sasan Matinfar, M. Ali Nasseri, Ulrich Eck, Hessam Roodaki, Navid Navab, Chris P. Lohmann, Mathias Maier, and Nassir Navab
Precise Ultrasound Bone Registration with Learning-Based Segmentation
and Speed of Sound Calibration ... 682
 Mehrdad Salehi, Raphael Prevost, José-Luis Moctezuma, Nassir Navab,
 and Wolfgang Wein

Convolutional Neural Network and In-Painting Techniques
for the Automatic Assessment of Scoliotic Spine Surgery
from Biplanar Radiographs ... 691
 B. Aubert, P.A. Vidal, S. Parent, T. Cresson, C. Vazquez,
 and J. De Guise

Medical Image Computing

A Novel Automatic Segmentation Method to Quantify the Effects of Spinal
Cord Injury on Human Thigh Muscles and Adipose Tissue 703
 Samineh Mesbah, Ahmed Shalaby, Sean Stills, Ahmed Soliman,
 Andrea Willhite, Susan Harkema, Enrico Rejc, and Ayman El-baz

OptiC: Robust and Automatic Spinal Cord Localization on a Large Variety
of MRI Data Using a Distance Transform Based Global Optimization 712
 Charley Gros, Benjamin De Leener, Sara M. Dupont, Allan R. Martin,
 Michael G. Fehlings, Rohit Bakshi, Subhash Tummala, Vincent Auclair,
 Donald G. McLaren, Virginie Callot, Michaël Sdika,
 and Julien Cohen-Adad

Joint Craniomaxillofacial Bone Segmentation and Landmark Digitization
by Context-Guided Fully Convolutional Networks 720
 Jun Zhang, Mingxia Liu, Li Wang, Si Chen, Peng Yuan, Jianfu Li,
 Steve Guo-Fang Shen, Zhen Tang, Ken-Chung Chen, James J. Xia,
 and Dinggang Shen

Online Statistical Inference for Large-Scale Binary Images 729
 Moo K. Chung, Ying Ji Chuang, and Houri K. Vorperian

Short Acquisition Time PET Quantification Using MRI-Based
Pharmacokinetic Parameter Synthesis .. 737
 Catherine J. Scott, Jieqing Jiao, M. Jorge Cardoso, Andrew Melbourne,
 Enrico De Vita, David L. Thomas, Ninon Burgos, Pawel Markiewicz,
 Jonathan M. Schott, Brian F. Hutton, and Sébastien Ourselin

A Variational Approach to Sparse Model Error Estimation
in Cardiac Electrophysiological Imaging ... 745
 Sandesh Ghimire, John L. Sapp, Milan Horacek, and Linwei Wang

Data-Driven Rank Aggregation with Application to Grand Challenges 754
 James Fishbaugh, Marcel Prastawa, Bo Wang, Patrick Reynolds,
 Stephen Aylward, and Guido Gerig
Medical Image Computing and Computer-Assisted Intervention — MICCAI 2017
20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part II
Collins, D.L.; Duchesne, S. (Eds.)
2017, XXVIII, 785 p. 319 illus., Softcover
ISBN: 978-3-319-66184-1