Contents

1 New Ideas for Solving Old Problems - An Introduction 1

Part I Group Theory in Molecular Physics

2 Basic Concepts ... 9
 2.1 Symmetry Groups of the Molecular Hamiltonian 9
 2.1.1 General Representation Theory 11
 2.1.2 Lie Groups and Permutation Groups 14
 2.2 Zero-Order Models in Molecular Theory 18
 2.2.1 The Separation of the Molecular Hamiltonian 19
 2.2.2 The Zero-Order Models for Nuclear Motion 22
 2.3 Connecting Dynamics and Group Theory – Outlook to This Work 25

3 Schur–Weyl Duality in Molecules 27
 3.1 Nuclear Spin States in Molecules 27
 3.1.1 The Natural Way 31
 3.1.2 Unitary Symmetry 35
 3.1.3 Permutation Symmetry 37
 3.2 Schur–Weyl Duality 39
 3.2.1 Application of the Duality Theorem 40
 3.3 Conclusion ... 41

4 Reactive Collisions .. 45
 4.1 Representation Theory in Reactions of Small Molecules 47
 4.1.1 Mathematical Preliminaries 47
 4.1.2 Single Molecules .. 49
 4.1.3 A First Example .. 51
4.2 The $\text{H}_3^+ + \text{H}_2$ Reaction 53

4.2.1 A Restricted Symmetry Group for the Intermediate Complex 56

4.2.2 Implications for Experiments.. 59

4.2.3 The Deuterated Version .. 59

4.3 Discussion .. 62

Part II Extremely Floppy Molecules

5 Introducing Extreme Floppiness .. 67

6 Symmetry Beyond Perturbation Theory 71

6.1 Representation Theory of Molecular Rotation 71

6.1.1 Example: The H_3^+ ion ... 81

6.2 The Failure of the Subgroup Picture 82

6.3 Concluding Remarks .. 86

7 The Molecular Super-Rotor ... 87

7.1 Large Amplitude Motion .. 87

7.2 Super-Rotation .. 91

7.2.1 The Energy Expression ... 93

7.2.2 Degrees of Freedom ... 94

8 Super-Rotor States and Their Symmetry 95

8.1 Five-Dimensional Rotor States ... 95

8.1.1 Parity and Dipole Selection Rules 99

8.2 Permutation-Inversion Symmetry 100

8.2.1 The Permutation Group of Five Identical Particles 102

8.3 Conclusion .. 105

9 Protonated Methane ... 107

9.1 The Molecule ... 107

9.2 The Experiment .. 109

9.3 The Model ... 111

9.4 The Discussion .. 115

10 Refinements and Further Applications 117

10.1 Beyond Zero-Order .. 117

10.1.1 Generalized Moments of Inertia 117

10.1.2 Higher-Order Terms ... 120

10.2 Additional Target Molecules .. 121

10.3 Concluding Remarks .. 123
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Ultrafast Rotation</td>
<td>127</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>127</td>
</tr>
<tr>
<td>11.2</td>
<td>The Gutzwiller Trace Formula</td>
<td>129</td>
</tr>
<tr>
<td>11.3</td>
<td>The Rotational Energy Surface</td>
<td>136</td>
</tr>
<tr>
<td>11.3.1</td>
<td>The Paths on the Rotational Energy Surface</td>
<td>139</td>
</tr>
<tr>
<td>11.3.2</td>
<td>The Quantization Conditions</td>
<td>142</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Two Approaches to Generate the Rotational Energy Surface</td>
<td>144</td>
</tr>
<tr>
<td>12</td>
<td>Application to Sulfur Dioxide</td>
<td>149</td>
</tr>
<tr>
<td>12.1</td>
<td>The Molecule</td>
<td>149</td>
</tr>
<tr>
<td>12.2</td>
<td>The Comparison</td>
<td>150</td>
</tr>
<tr>
<td>13</td>
<td>Discussion</td>
<td>155</td>
</tr>
<tr>
<td>13.1</td>
<td>The TROVE - Generated Rotational Energy Surface</td>
<td>155</td>
</tr>
<tr>
<td>13.2</td>
<td>Generalization of the Approach</td>
<td>156</td>
</tr>
<tr>
<td>14</td>
<td>New Ideas for Solving Old Problems – A Conclusion</td>
<td>159</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>169</td>
</tr>
</tbody>
</table>
Molecular Symmetry, Super-Rotation, and Semiclassical Motion
New Ideas for Solving Old Problems
Schmiedt, H.
2017, IX, 171 p. 29 illus., 25 illus. in color., Hardcover
ISBN: 978-3-319-66070-7