Contents

1 Introduction to Unconventional Superconductivity and Density Waves in Cuprates .. 1
 1.1 Superconductivity .. 2
 1.1.1 What Is a Superconductor? 2
 1.1.2 BCS Theory of Superconductivity 5
 1.2 High-Temperature Unconventional Superconductivity in Cuprates ... 8
 1.2.1 Effective Models of the CuO₂ Plane 10
 1.2.2 Phase Diagram 11
 1.2.3 Anti-Ferromagnetism 12
 1.2.4 High-Temperature d-Wave Superconductivity 12
 1.2.5 Strange Metal 12
 1.2.6 The Pseudogap 13
 1.3 Charge Density Waves 14
 1.4 Unconventional Density Waves in Cuprates 16
 1.5 The Significance of CDW in Cuprates 17
 1.6 Organisation of This Thesis 19
References .. 20

2 Spectroscopic-Imaging STM (SI-STM) 23
 2.1 Quantum Tunnelling as a Spectroscopy 24
 2.1.1 Tunnelling Hamiltonian Formalism 24
 2.1.2 Normal-Insulator-Normal (NIN) Tunnelling 25
 2.1.3 Superconductor-Insulator-Normal (SIN) Tunnelling 27
 2.1.4 Superconductor-Insulator-Superconductor (SIS) Tunnelling ... 29
 2.2 STM - Principles 29
 2.3 STM - Modes of Operation 31
 2.3.1 Topography 31
 2.3.2 Spectroscopy 32
5 The Scanned Josephson Tunnelling Microscope

5.1 Fundamentals of SJTM Operation

5.2 The Josephson Effect as a Measure of the Superconducting Order Parameter

5.3 Josephson Current-Voltage Characteristics in Ultra-small Junctions

5.3.1 \(I(V) \) Characteristics for Josephson Junctions with Strong Phase Coupling

5.3.2 Thermal Phase Fluctuations in Ultra-small Josephson Junctions

5.3.3 Including Both Thermal and Quantum Phase Fluctuations

5.3.4 Expected Pair-Current \(I_p(V) \) in Ultra-small Josephson Junctions

5.4 Experimental Strategy for Cuprate SJTM

5.5 Superconducting STM Tips for Cuprate SJTM

5.5.1 Fabrication of Superconducting \(\text{Bi}_2\text{Sr}_2\text{CaCu}_2\text{O}_{8+\delta} \) Nano-flake Tips

5.5.2 Characterisation of Nano-flake Tip Geometry

5.5.3 Stability of Tips During \(I_c(\tau) \) Measurement

5.6 Experimental Josephson Current-Voltage Characteristics

5.7 Validating SJTM as a Probe of the Order Parameter

5.7.1 Imaging the Suppression of \(\Psi(\tau) \) at Individual Zinc Impurities

5.7.2 Modulation of Superconductivity by the Bulk Structural Super-Modulation

5.8 Conclusions and Future Directions of SJTM

5.8.1 Future State of the Art in Condensate Imaging

5.8.2 Inelastic Cooper-Pair Tunnelling Spectroscopy

References

6 Pair Density Waves in Cuprates

6.1 The Pair Density Wave

6.2 Experimental Evidence for a Cuprate PDW

6.2.1 Decoupling of Superconductivity Between the \(\text{CuO}_2 \) Planes

6.2.2 Photoemission Spectra

6.3 Coupled Order Parameters

6.4 Coupling of PDW to Other Order Parameters

6.4.1 Coupling to CDW

6.4.2 Coupling to SDW

6.4.3 Coupling to Uniform Superconductivity

6.5 Theoretical Proposals for a Cuprate PDW

6.5.1 Variational Numerical Calculations

References