Contents

1 Introduction .. 1
 1.1 Introduction to Transition Metal Oxide Materials 1
 1.1.1 Introduction 1
 1.1.2 The Demand for Novel Functional Materials 2
 1.1.3 Unique Property and Wide Applications of TMOs 2
 1.1.4 Perovskite Oxides 4
 1.1.5 Some Typical Transition Metal Oxides 5
 1.2 Photocatalytic Water Splitting 7
 1.2.1 Why Is Photocatalytic Water Splitting Needed? 7
 1.2.2 Honda-Fujishima Effect and History of Photocatalytic
 Water Splitting 8
 1.2.3 Basic Principle and Steps of Photocatalytic Water
 Splitting ... 10
 1.3 Nonlinear Optical Properties of Saturable Absorption 13
 1.4 The Strain-Induced Effect 13
 1.5 Thesis Outline .. 14
 Bibliography .. 15

2 Sample Preparation and Characterization Techniques 19
 2.1 Solid State Synthesis 19
 2.2 Pulsed Laser Deposition 20
 2.2.1 History of Pulsed Laser Deposition 20
 2.2.2 The Mechanism and Process of Pulsed Laser
 Deposition .. 21
 2.2.3 The Advantage of Pulsed Laser Deposition 22
 2.3 Crystal Structure Characterization 23
 2.4 Photocatalytic Water Splitting Property Measurement 24
4.3 Results and Discussion 65
 4.3.1 The Photocatalytic Efficiencies of MNbO₃ 65
 4.3.2 The Electrical Transport Properties of MNbO₃ 68
 4.3.3 The Absorbance Efficiencies and Plasmon Resonance Frequencies of MNbO₃ 69
 4.3.4 The Transient Absorbance Spectra of MNbO₃ 70
4.4 Conclusion ... 73
Bibliography .. 73

5 New Tunable and Low-Loss Correlated Plasmons in Mott-like Insulating Oxides .. 75
 5.1 Introduction .. 75
 5.1.1 Introduction to This Chapter 75
 5.1.2 The Motivation to Study Plasmons in SrNbO₃⁺δ Family Material 75
 5.2 Experimental Procedure 76
 5.3 Results .. 77
 5.3.1 The Electrical Transport Property of SrNbO₃⁺δ 77
 5.3.2 The Complex Dielectric Function and Loss Function of SrNbO₃⁺δ 77
 5.3.3 Optical Conductivity and Spectral Weight Analysis 81
 5.3.4 Oxygen Extra Planes in SrNbO₃⁺δ 83
 5.3.5 Thickness-Dependent Study of Correlated Plasmons 84
 5.4 Discussion ... 85
 5.5 Conclusion ... 87
Bibliography .. 88

6 The Nonlinear Optical Properties of MNbO₃ (M = Ca, Sr, Ba) Thin Films ... 91
 6.1 Passive Mode Locking and Saturable Absorption 91
 6.1.1 Introduction to Passive Mode Locking 91
 6.1.2 Saturable Absorber Materials 92
 6.2 Experimental Procedure 92
 6.3 Results and Discussion 94
 6.3.1 The Crystal Structure of MNbO₃ Thin Films Grown on LSAT Substrates 94
 6.3.2 The Optical Absorption Property of MNbO₃ Thin Films Grown on LSAT Substrates 95
 6.3.3 The Electrical Transport Property of MNbO₃ Thin Films Grown on LSAT Substrates 97
 6.3.4 The Nonlinear Optical Properties of MNbO₃ Thin Films Grown on LSAT Substrates 98
 6.4 Conclusion ... 100
Bibliography .. 100
Crystal Structure, Electronic and Optical Properties of Epitaxial Alkaline Earth Niobate Thin Films
Dongyang, W.
2017, XVI, 120 p. 73 illus., 41 illus. in color., Hardcover
ISBN: 978-3-319-65911-4