Contents

1 A General Concept of Dynamic Materials 1
 1.1 The Idea and Definition of Dynamic Materials 1
 1.2 Two Types of Dynamic Materials 3
 1.3 Implementation of Dynamic Materials in Mechanics and
 Electromagnetics 6
 1.3.1 Realization of DM as Large Array of Coupled
 Micro/Nanoelectromechanical Structures 7
 1.3.2 Electromagnetic Realization of DM Structures 17
 1.3.3 Ferroelectric and Ferromagnetic Materials 17
 1.3.4 Nonlinear Optics 21
 1.4 Some Applications of Dynamic Materials 22
 1.5 Dynamic Materials and Vibrational Mechanics 23

References ... 25

2 An Activated Elastic Bar: Effective Properties 33
 2.1 Longitudinal Vibrations of Activated Elastic Bar 33
 2.2 The Effective Parameters of Regular Activated Laminate .. 39
 2.3 The Effective Parameters: Homogenization 44
 2.4 The Effective Parameters: Floquet Theory 47
 2.5 The Effective Parameters: Discussion 50
 2.6 Balance of Energy in Longitudinal Wave Propagation
 Through an Activated Elastic Bar 56
 2.7 Averaged and Effective Energy and Momentum 61
 2.8 Homogenization of Regular Activated Laminates:
 Theoretical Motivation 66

References ... 69
3 Dynamic Materials in Electrodynamics of Moving Dielectrics

3.1 Preliminary Remarks

3.2 The Basics of Electrodynamics of Moving Dielectrics

3.3 Relativistic Form of Maxwell’s System

3.4 Material Tensor s: Discussion—Two Types of Dynamic Materials

3.5 An Activated Dielectric Laminate: One-Dimensional Wave Propagation

3.6 A Spatio-Temporal Polycrystalline Laminate: One-Dimensional Wave Propagation

3.7 A Spatio-Temporal Polycrystalline Laminate: The Bounds

3.8 An Activated Dielectric Laminate: Negative Effective Material Properties

3.9 An Activated Dielectric Laminate: The Energy Considerations—Waves of Negative Energy

3.10 Numerical Examples and Discussion

3.11 Effective Properties of Activated Laminates Calculated via Lorentz Transform: Case of Spacelike Interface

References

4 G-Closures of a Set of Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation

4.1 Preliminary Considerations: Terminology

4.2 Conservation of the Wave Impedance Through One-Dimensional Wave Propagation: A Stable G-Closure of a Single Isotropic Dielectric

4.3 A Stable G-Closure of a Set U of Two Isotropic Dielectrics with Respect to One-Dimensional Wave Propagation

4.4 The Second Invariant \mathcal{E}/M as an Affine Function: A Stable G-Closure of an Arbitrary Set U of Isotropic Dielectrics

4.5 A Stable G_m-Closure of a Set U of Two Isotropic Dielectrics

4.6 Comparison with an Elliptic Case

References

5 Rectangular Material Structures in Space-Time

5.1 Introductory Remarks

5.2 Statement of a Problem

5.3 Case of Separation of Variables

5.4 Checkerboard Assemblage of Materials with Equal Wave Impedance

5.5 Energy Transformation in the Presence of Limit Cycles

References
5.6 Numerical Analysis of Energy Accumulation 154
5.7 Energy Transformation in the Presence of Losses 158
5.8 Mathematical Analysis of the Energy Concentration in a Checkerboard: The Bounds Defining the “Plateau Effect” 162
 5.8.1 Analytic Characterization of the Limit Cycles and Plateau Zones .. 162
 5.8.2 Conditions on Material Parameters Necessary and Sufficient for Energy Accumulation 170
 5.8.3 Numerical Verification ... 174
 5.8.4 Summary of Analytic Results 175
5.9 Propagation of Dilatation and Shear Waves Through a Dynamic Checkerboard Material Geometry in 1D Space + Time ... 178
 5.9.1 Wave Propagation Through a Dynamic Elastic Checkerboard Assembly ... 179
 5.9.2 Results .. 181
5.10 Coaxial Transmission Line as a Checkerboard 189

References ... 193

6 On Material Optimization in Continuum Dynamics 195
 6.1 General Considerations .. 195
 6.2 An Optimal Transportation of Masses 197
 6.2.1 Statement of the Problem 197
 6.2.2 Admissible Controls and the Properties of Solutions ... 198
 6.2.3 Adjoint System ... 207
 6.2.4 Application to Problem (6.5) 211
 6.2.5 Conclusions ... 216
 6.3 Dynamic Material Optimization for Wave Equation 216
 6.3.1 Preliminary Considerations 216
 6.3.2 Statement and Solution of a Typical Elliptic Problem ... 217
 6.3.3 Some Properties of Polysaddification 229
 6.3.4 Additional Remarks .. 233
 6.3.5 Application of Direct Approach to Material Optimization for the Wave Equation ... 233
 6.4 A Plane Electromagnetic Wave Propagation Through an Activated Laminate in 3D ... 238
 6.5 The Homogenized Equations: Elimination of the Cutoff Frequency in a Plane Waveguide .. 239
 6.6 The Effective Material Tensor and Homogenized Electromagnetic Field ... 240
 6.7 The Transport of Effective Energy 242
Contents

6.8 On the Necessary Conditions of Optimality in a Typical Hyperbolic Control Problem with Controls in the Coefficients ... 243
 6.8.1 Introduction 243
 6.8.2 Statement of the Problem 244
 6.8.3 The Necessary Conditions of Optimality 246

6.9 Transformation of the Expression for ΔI : The Strip Test .. 250

6.10 A Polycrystal in Space-Time 252

References .. 259

Appendix A .. 261

Appendix B .. 265

Appendix C .. 267

Appendix D .. 271

Index ... 275
An Introduction to the Mathematical Theory of Dynamic Materials
Lurie, K.A.
2017, XVII, 277 p. 107 illus., 37 illus. in color., Hardcover
ISBN: 978-3-319-65345-7