Chapter 2
Introduction to Stochastic Calculus

In this chapter, we focus on the essential aspects of stochastic calculus, a theory of integration with respect to Brownian-motion-type processes and their transformation properties. We take fairly standard approach and the reader can study more from books dedicated to the subject [2, 5–8].

2.1 Brownian Motion

Suppose throughout this text that we are given a probability space \((\Omega, \mathcal{F}, P)\) where \(\Omega\) is a measurable space, \(\mathcal{F}\) a \(\sigma\)-algebra on \(\Omega\) and \(P\) a probability measure on \(\mathcal{F}\). For more details, consult any book on probability theory such as Durrett [3], see also Appendix A (which you can find using the instructions of the preface). Some omitted details are further developed in the appendices.

A stochastic process is a collection of random variables \(X_t\) indexed by a variable \(t\) which we call time and which belongs to an ordered set \(I\). A notation \((X_t)_{t \in I}\) is used for a stochastic process. Almost always \(I = \mathbb{R}_{\geq 0}\) or \(I = \mathbb{Z}_{\geq 0}\). Since \(t\) is regarded as time, we call the process in those cases continuous time stochastic process and discrete time stochastic process, respectively. In this text usually \(I = \mathbb{R}_{\geq 0}\).

The mapping \(t \mapsto X_t(\omega)\) is called the path of \((X_t)_{t \in I}\). For continuous time processes the path regularity properties are often essential in their definitions. The most important example of a process whose path is continuous, is the Brownian motion.

Definition 2.1 A stochastic process \((B_t)_{t \geq 0}\) is called a (standard one-dimensional) Brownian motion if \(B_0 = 0\) and

\[\text{We use the standard notation } X(\omega), \text{ where } \omega \in \Omega \text{ and } X(\omega) \in \mathbb{R}, \text{ for a (real-valued) random variable on } (\Omega, \mathcal{F}, P).\]
1. \(B_{t_1} - B_{s_1}, B_{t_2} - B_{s_2}, \ldots, B_{t_n} - B_{s_n} \) are independent for any \(n \in \mathbb{N} \) and for any \(0 \leq s_1 < t_1 \leq s_2 < t_2 \leq \ldots \leq s_n < t_n \).

2. For any \(s, t \geq 0 \), \(B_{s+t} - B_s \) is normally distributed\(^2\) with mean 0 and variance \(t \).

3. With probability one, \(t \mapsto B_t \) is continuous.

Remark 2.1 We say that the process has independent and stationary increments, if the properties 1. and 2. hold, respectively.

Brownian motion is a Gaussian process meaning that all finite dimensional distributions are multivariate Gaussians. From its definition it follows that for any \(0 \leq t_1 < t_2 < \ldots < t_n \) and any Borel sets \(A_k \subset \mathbb{R}, k = 1, 2, \ldots, n, \)

\[
P[B_{t_k} \in A_k, \forall k \in [1, n]] = \int_{A_1 \times A_2 \times \ldots \times A_n} \prod_{k=1}^n p(x_{k-1}, x_k, t_k - t_{k-1}) \, dx_1 \, dx_2 \ldots \, dx_n
\]

where \(p(x, y, s) = \frac{1}{\sqrt{2\pi s}} \exp \left(-\frac{(x-y)^2}{2s} \right), t_0 = 0 \) and \(x_0 = 0 \).

The “canonical” probability space for Brownian motion is the space of continuous functions \(C(\mathbb{R}_{\geq 0}) \) with a certain Borel probability measure \(P \) and where the Brownian motion is the coordinate map \(B_t(\omega) = \omega_t \). It turns out that there exists a probability space with a Brownian motion\(^3\) and its distribution in \(C(\mathbb{R}_{\geq 0}) \) defines the “canonical” Brownian motion. The paths of a Brownian motion are Hölder continuous: for each \(\gamma \in (0, 1) \) and \(T > 0 \), there exists a random variable \(K > 0 \) such that almost surely \(|B_t - B_s| \leq K |t - s|^{\gamma} \) for all \(s, t \in [0, T] \).\(^4\) The rough appearance of a Brownian path is shown by Fig. 1.5.

The following theorem shows that the assumption that the increments are normal is partly redundant in the definition of Brownian motion.

Theorem 2.1 If \((X_t)_{t \in \mathbb{R}_{\geq 0}}\) is a continuous stochastic process which has independent and stationary increments, then there exists a standard one-dimensional Brownian motion \((B_t)_{t \in \mathbb{R}_{\geq 0}}\) and real numbers \(\alpha \geq 0 \) and \(\beta \) such that \(X_t = \alpha B_t + \beta t \).

We call \(X_t = \alpha B_t + \beta t \) a Brownian motion with a linear drift.

\(^2\)Remember that \(X \) is normally distributed with mean \(\mu \) and variance \(\sigma^2 \) when \(P[X \in A] = \int_A \frac{1}{\sqrt{2\pi \sigma^2}} \exp \left(-\frac{(x-\mu)^2}{2\sigma^2} \right) \, dx \) for any Borel subset \(A \) of \(\mathbb{R} \).

\(^3\)The Brownian bridge construction of the Brownian motion: Consider a probability space with a countably infinite sequence of independent standard Gaussian random variables.

Suppose that we have constructed \(B^{[n]} = (B_{k\, T^{2^{-n}}})_{k=0,1,2,\ldots,2^n} \). Since the law of \(B^{[n+1]} = (B_{k\, T^{2^{-n-1}}})_{k=0,1,2,\ldots,2^{n+1}} \) is multivariate Gaussian, we can write the conditional law \((B_{k\, T^{2^{-n-1}}})_{k=1,3,5,\ldots,2^{n+1}-1} \) given \(B^{[n]} \) explicitly as multivariate Gaussian which we can construct using the given sequence of standard Gaussians. Continue this iteration ad infinitum. We leave as an exercise to check that, if \(B^{[n]} \) is linearly interpolated to all \(t \in [0, T] \), then the sequence \(B^{[n]} \) converges uniformly almost surely as \(n \rightarrow \infty \). It is sufficient to show that the uniform norms of \(B^{[n+1]} - B^{[n]} \) are summable over \(n \).

\(^4\)Hölder continuity of a Brownian motion follows as a side product from the Brownian bridge construction of the Brownian motion.
A process

Definition 2.2 A filtration on \((\Omega, F)\) is a collection \((\mathcal{F}_t)_{t \in \mathbb{R}_0^+}\) of sub-\(\sigma\)-algebras \(\mathcal{F}_t \subset F\) such that for each \(0 \leq s < t, \mathcal{F}_s \subset \mathcal{F}_t\).

A stochastic process \((X_t)_{t \in \mathbb{R}_+}\) on \((\Omega, F)\) is adapted to the filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_0^+}\) if for each \(t \geq 0, X_t\) is \(\mathcal{F}_t\)-measurable.

A filtration can be thought as refining information on the probability space and \(\mathcal{F}_t\) as the information available at time \(t\). For example, the \(\sigma\)-algebras generated by a Brownian motion \((B_t)_{t \in \mathbb{R}_+}\), i.e. \(\mathcal{F}^B_t = \sigma(B_s, s \in [0, t])\), form a filtration \((\mathcal{F}^B_t)_{t \in \mathbb{R}_0^+}\).

We will make the following more restrictive definition of Brownian motion.

Definition 2.3 A process \((B_t)_{t \in \mathbb{R}_0^+}\) is called a (standard one-dimensional) Brownian motion with respect to the filtration \((\mathcal{F}_t)_{t \in \mathbb{R}_0^+}\) if it is adapted to \((\mathcal{F}_t)_{t \in \mathbb{R}_0^+}\), \(B_0 = 0\) and

1. \(B_t - B_s\) are independent from \(\mathcal{F}_s\) for any \(0 \leq s < t\),
2. \(B_t - B_s, 0 \leq s < t\), is normally distributed with mean 0 and variance \(t - s\)
3. With probability one, \(t \mapsto B_t\) is continuous.

Remark 2.2 The definition is useful for instance when two Brownian motions \(B^{(1)}\) and \(B^{(2)}\) are considered on the same probability space. We can weaken \((\mathcal{F}_t)_{t \in \mathbb{R}_0^+}\) to \((\mathcal{F}^B_t)_{t \in \mathbb{R}_0^+}\) and therefore Definition 2.3 implies Definition 2.1.

Let \(p \geq 1\). Define the \(p\)’th variation of a process \((X_t)_{t \in \mathbb{R}_0^+}\) as

\[
V^{(p)}_X(t) = \lim_{\text{mesh(}\pi\text{)} \to 0} \sum_{k=0}^{m(\pi)-1} |X_{t_{k+1}} - X_{t_k}|^p
\]

where \(\pi\) is a partition of \([0, t]\) of the form \(\pi = \{0 = t_0 < t_1 < \ldots < t_{m(\pi)} = t\}\) and the limit is in terms of convergence in probability\(^6\) as \(\text{mesh}(\pi) = \max_k (t_{k+1} - t_k) \to 0\) We call the first variation \((p = 1)\) as total variation and the second variation \((p = 2)\) as quadratic variation.

Proposition 2.1 The quadratic variation of a Brownian motion exist and \(V^{(2)}_B(t) = t\).

Proof Let \(\varepsilon > 0\) and \(\pi\) be a partition with \(\text{mesh}(\pi) < (2\varepsilon)^{-1}\varepsilon^3\). Let \(\Delta_k = (B_{t_{k+1}} - B_{t_k})^2 - (t_{k+1} - t_k)\). Then \(\mathbb{E}[\Delta_j \Delta_k] = \delta_{jk} \mathbb{E}[\Delta_k^2]\) by independence and thus

\[
\mathbb{E}\left[\sum_{k=0}^{m(\pi)-1} (B_{t_{k+1}} - B_{t_k})^2 - t\right]^2 = \mathbb{E}[N^2 - 1]^2 \sum_k (t_{k+1} - t_k)^2 \leq 2\text{mesh}(\pi)t.
\]

\(^5\)We use the standard notations \(\sigma(A, B, \ldots)\) and \(\sigma(A_i, i \in I)\) for the \(\sigma\)-algebra generated by the random variables \(A, B, \ldots\) and \(A_i, i \in I\), respectively.

\(^6\)Convergence in probability means here that that for each \(\varepsilon > 0\) there exist \(\delta > 0\) such that \(\mathbb{P}[\sum_{i=0}^{m(\pi)-1} |X_{t_{k+1}} - X_{t_k}|^p - V^{(p)}_X(t)] \geq \varepsilon] < \varepsilon\) when \(\text{mesh}(\pi) < \delta\).
Here N is normally distributed with mean zero and variance one and we used the scaling property of Brownian motion. Hence by Chebyshev’s inequality

$$P \left[\left| \sum_{k=0}^{m(\pi)-1} (B_{t_{k+1}} - B_{t_k})^2 - t \right| \geq \varepsilon \right] \leq \frac{2\text{mesh}(\pi)t}{\varepsilon^2} < \varepsilon \quad (2.2)$$

and the convergence in probability follows.

The above proof and the Borel–Cantelli lemma, see e.g. [3], gives that the total variation of a Brownian motion is almost surely infinite in the sense that if take the limit along the sequence of dyadic partitions $\pi_n = \{ t_k 2^{-n} : k = 0, 1, 2, \ldots, 2^n \} = \{ t_0 < t_1 < \ldots < t_{2^n} \}$ of $[0, t]$, then

$$\lim_{n \to \infty} \sum_{t_k \in \pi_n, k \leq 2^n-1} |B_{t_{k+1}} - B_{t_k}| = \infty \quad (2.3)$$

almost surely. Namely, if we denote $P[E(\pi)]$ the left-hand side of (2.2), then $\sum_n P[E(\pi_n)] < \infty$ and hence $\sum_{t_k \in \pi_n, k \leq 2^n-1} (B_{t_{k+1}} - B_{t_k})^2 \to t$ almost surely by the Borel–Cantelli lemma. Take any ω for which the convergence occurs. Then (2.3) is implied by the fact that as $n \to \infty$

$$\sum_{t_k \in \pi_n, k \leq 2^n-1} (B_{t_{k+1}}(\omega) - B_{t_k}(\omega))^2 \leq \text{mesh}(\pi_n) \sum_{t_k \in \pi_n, k \leq 2^n-1} |B_{t_{k+1}}(\omega) - B_{t_k}(\omega)|.$$

2.2 Stochastic Integration

We define in this section a process X_t which can be interpreted as the integral

$$X_t(\omega) = \int_0^t f(t, \omega) \, dB_t(\omega).$$

The construction is important because of the following reasons: (i) It is tool for generating new stochastic processes out of Brownian motion. (ii) Coordinate changes such as $f(B_t)$ turn out to have extremely useful representation using the above integral. (iii) In many applications, dB_t models independent and stationary noise.

The integral doesn’t exist as a pathwise Riemann–Stieltjes (or similar) integral even for a continuous f, because the total variation of the Brownian motion is infinite. For instance, for the definition that we use, it holds that $\int_0^1 B_s \, dB_s \neq (1/2)B_1^2$ and therefore the usual integration by parts formula can’t hold.
2.2 Stochastic Integration

2.2.1 Stochastic Integral as L^2-Extension

In this section $(\mathcal{F}_t)_{t \in \mathbb{R}_{\geq 0}}$ is a filtration and $(B_t)_{t \in \mathbb{R}_{\geq 0}}$ is a standard one-dimensional Brownian motion with respect to $(\mathcal{F}_t)_{t \in \mathbb{R}_{\geq 0}}$.

We need to define the correct set of integrands f for the stochastic integral. In this subsection, they’ll be the measurable, adapted and square-integrable processes.

Definition 2.4 A stochastic process $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ is **measurable** if the mapping $(t, \omega) \mapsto X_t(\omega)$ is $\mathcal{B}_{\mathbb{R}} \times \mathcal{F}$-measurable.

Definition 2.5 Let $T > 0$. We define L^2 to be the set of measurable, adapted processes f that satisfy

$$\mathbb{E} \left[\int_0^T f(t, \cdot)^2 \, dt \right] < \infty \quad (2.4)$$

and we call $f \in L^2$ simple if f can be written in the form

$$f(t, \omega) = \sum_{k=0}^{n-1} X_k(\omega) \mathbb{1}_{[t_k, t_{k+1})}(t) \quad (2.5)$$

where $0 \leq t_0 < t_1 < t_2 \ldots < t_n \leq T$ and X_k is a \mathcal{F}_{t_k}-measurable, square integrable random variable.7

Remark 2.3 Notice that L^2 is a closed subspace of $L^2(dt \times d\mathbb{P})$.

We would like to define a mapping $f \mapsto I[f]$ which we later denote by

$$I[f](\omega) =: \int_0^T f(t, \omega) \, dB_t(\omega).$$

If that notation makes any sense, we need to define $I[\mathbb{1}_{[s, t)}] = B_t - B_s$ for any $0 \leq s < t \leq T$. Therefore for any f which is of the form (2.5) it is natural to define by linearity that

$$I[f] = \sum_{k=0}^{n-1} X_k(B_{t_{k+1}} - B_{t_k}).$$

It turns out that this definition that works for any simple $f \in L^2$ has a unique L^2-continuous extension to the whole L^2. Namely, we first observe that the following isometry holds.

Proposition 2.2 (Itô isometry for simple processes) For any bounded, simple $f \in L^2$,

7The class L^2 could be instead called $L^2(T)$ and then we could set $f \in L^2$ if and only if $f \in L^2(T)$ for any $T > 0$. For simplicity, we use the notation L^2 for both classes.
\[\mathbb{E}[I[f]^2] = \mathbb{E} \left[\int_0^T f(t, \cdot)^2 \, dt \right]. \]

Proof Let’s calculate both sides explicitly for a bounded, simple \(f \in \mathcal{L}^2 \) of the form (2.5). Notice that \(f^2 = \sum_{k=0}^{n-1} X_k^2 \mathbb{I}_{[t_k, t_{k+1})} \) and hence

\[\mathbb{E} \left[\int_0^T f(t, \cdot)^2 \, dt \right] = \sum_{k=0}^{n-1} \mathbb{E}[X_k^2](t_{k+1} - t_k). \]

On the other hand

\[\mathbb{E}[I[f]^2] = \sum_k \mathbb{E} \left[X_k^2 (B_{t_{k+1}} - B_{t_k})^2 \right] + 2 \sum_{k<l} \mathbb{E}[X_k X_l (B_{t_{k+1}} - B_{t_k})(B_{t_{l+1}} - B_{t_l})]. \]

The facts that \(f \) is adapted, and thus \(X_k \) is \(\mathcal{F}_k \)-measurable, and that \(B_{t_{k+1}} - B_{t_k} \) is independent from \(\mathcal{F}_k \) imply that

\[\mathbb{E} \left[X_k^2 (B_{t_{k+1}} - B_{t_k})^2 \right] = \mathbb{E}[X_k^2] \mathbb{E} \left[(B_{t_{k+1}} - B_{t_k})^2 \right] = \mathbb{E}[X_k^2] (t_{k+1} - t_k), \]

\[\mathbb{E}[X_k X_l (B_{t_{k+1}} - B_{t_k})(B_{t_{l+1}} - B_{t_l})] = \mathbb{E}[X_k X_l (B_{t_{k+1}} - B_{t_k})] \mathbb{E}[B_{t_{l+1}} - B_{t_l}] = 0 \]

for \(k < l \). The claim follows. \(\square \)

The simple processes are dense in \(\mathcal{L}^2 \) by the next result. Its proof is omitted here.

Proposition 2.3 For each \(f \in \mathcal{L}^2 \), there exist a sequence of bounded, simple \(f_n \in \mathcal{L}^2 \) such that

\[\mathbb{E} \left[\int_0^T (f(t, \cdot) - f_n(t, \cdot))^2 \, dt \right] \to 0, \]

i.e. \(f_n \) converges to \(f \) in \(L^2(dt \times dP) \).

If \(f_n \in \mathcal{L}^2 \) is a sequence of simple, bounded processes converging to \(f \), then \(f_n \) is a Cauchy sequence in \(L^2(dt \times dP) \) and hence by the isometry property \(I[f_n] \) is a Cauchy sequence if \(L^2(dP) \) and hence it converges. Therefore we can define

\[I[f] = \lim_n I[f_n]. \]

Notice that this limit doesn’t depend on the choice of \(f_n \); if \(f_n \) and \(f'_n \) are two such sequences, then \(f_n - f'_n \) goes to zero in \(L^2(dt \times dP) \) and hence by isometry, \(\lim_n I(f_n) = \lim_n I(f'_n) \) almost surely. This is summarized in the following definition.

Definition 2.6 For any \(f \in \mathcal{L}^2 \), the **stochastic integral** (or **Itô integral**) is defined to be

\[\int_0^T f \, dB_t(\omega) := I[f](\omega) := (\lim_n I[f_n])(\omega) \quad (2.6) \]
where the limit is in $L^2(P)$ and $f_n \in \mathcal{L}^2$ is any sequence of bounded, simple processes converging to f in $L^2(dr \times dP)$. The integral is defined almost surely.

Proposition 2.4 (Itô isometry for \mathcal{L}^2) For any $f \in \mathcal{L}^2$, $E[(\int_0^T f dB_t)^2] = E[\int_0^T f^2 dt]$.

Proposition 2.5 If $f_n \in \mathcal{L}^2$, $f \in \mathcal{L}^2$ and $f_n \to f$ in $L^2(dt \times dP)$ then $\int_0^T f_n dB_t \to \int_0^T f dB_t$ in $L^2(P)$.

Example 2.1 We’ll show that

$$\int_0^t B_s dB_s = \frac{1}{2}B_t - \frac{1}{2}t.$$

Let π_n be a sequence of partitions of $[0, t]$ such that $mesh(\pi_n) \to 0$. By the above, the sequence of processes $f_n(s, \omega) = \sum_{t_j \in \pi_n} B_{t_j}(\omega) \mathbb{1}_{[t_j, t_j+1)}(s)$ is a reasonable choice for a discretization of the integrand. Since

$$E\left[\int_0^t (B_s - f_n(s, \cdot))^2 ds\right] = E\left[\sum_j \int_{t_j}^{t_{j+1}} (B_s - B_{t_j})^2 ds\right] = \sum_j \frac{1}{2}(t_{j+1} - t_j)^2 \to 0$$

as $n \to \infty$, then by the definition of the stochastic integral, $\int_0^t B_s dB_s = \lim \int_0^t f_n dB_s = \lim \sum_j B_{t_j}(B_{t_{j+1}} - B_{t_j})$. Now notice that $B_{t_{j+1}}^2 - B_{t_j}^2 = (B_{t_{j+1}} - B_{t_j})^2 + 2B_{t_j}(B_{t_{j+1}} - B_{t_j})$ and thus

$$\sum_j B_j(B_{t_{j+1}} - B_{t_j}) = \frac{1}{2}B_t^2 - \frac{1}{2} \sum_j (B_{t_{j+1}} - B_{t_j})^2$$

and the second term on the right converges in L^2 to the quadratic variation of Brownian motion which we already showed to be t.

The following proposition states properties of the stochastic integral which hold for simple processes and hence continue to hold for any limit of a sequence of simple processes.

Proposition 2.6 Let $f, g \in \mathcal{L}^2$, $a \in \mathbb{R}$ and let $0 \leq S < U < T$. Then

1. $\int_S^T f dB_t = \int_S^U f dB_t + \int_U^T f dB_t$
2. $\int_S^T af dB_t = a \int_S^T f dB_t$
3. $\int_S^T (f + g) dB_t = \int_S^T f dB_t + \int_S^T g dB_t$
4. $E[\int_S^T f dB_t] = 0$
5. $\int_S^T f dB_t$ is \mathcal{T}_T-measurable
2.2.2 **Stochastic Integral as a Process**

2.2.2.1 **Stochastic Integral as a Continuous Martingale**

Based on the results of Sect. 2.2.1, we try to define a process X_t such that $X_t = \int_0^t f \, dB_s$ for every t. The problem in defining $X_t = I[f]_{[0,t]}$ is that the for each fixed t, X_t is defined in a set of probability one, say, in Ω_t, but it is possible that the probability of the uncountable intersection $\bigcap_t \Omega_t$ is strictly less than 1 or even that $\bigcap_t \Omega_t$ is not an event (a measurable set). Therefore we define X_t in this way in a countable set of t and then extend by continuity of $t \mapsto X_t$ to other values of t as in the following theorem. For the definition of a martingale consult Appendix A.

Theorem 2.2 (Stochastic integral is a continuous L^2-martingale) For each $f \in L^2$ there exists a continuous square integrable martingale $(X_t)_{t \in \mathbb{R}_\geq 0}$ such that for each t, $X_t = \int_0^t f(s, \cdot) \, dB_s$ almost surely.

Remark 2.4 The process $(X_t)_{t \in \mathbb{R}_\geq 0}$ is unique in the sense that if there is another process $(X'_t)_{t \in \mathbb{R}_\geq 0}$ with the same properties, then almost surely $X_t = X'_t$ for all t.

Proof Fix some $T > 0$. Take a sequence of simple (and bounded) $f_n \in L^2$ such that $f_n \to f$ in $L^2(dt \times dP, [0, T] \times \Omega)$ and define $X^{(n)}_t = I[f_n]_{[0,t]}$ which is well-defined in whole Ω. If $f_n = \sum a_k \mathbb{I}_{[t_k, t_{k+1})}$, then for $t_l \leq t < t_{l+1}$ we have an explicit formula

$$X^{(n)}_t = a_l \cdot (B_t - B_{t_l}) + \sum_{k=0}^{l-1} a_k \cdot (B_{t_{k+1}} - B_{t_k}). \quad (2.7)$$

Clearly $t \mapsto X_t$ is continuous. To show that it is a martingale, notice first that it is adapted because all the random variables on the right of (2.7) are \mathcal{F}_t-measurable. Next notice that $\mathbb{E}[|X^{(n)}_t|] < \infty$, because it is a finite sum of integrable random variables. Finally, for $0 \leq s < t \leq T$ we can assume that $s = t_l$ and $t = t_m$ for some l and m (redefine the partition in f_n again if necessary) and then

$$\mathbb{E}[X^{(n)}_t | \mathcal{F}_s] = \mathbb{E}[X^{(n)}_s | \mathcal{F}_s] + \mathbb{E}[\sum_{k=l}^{m-1} a_k \cdot (B_{t_{k+1}} - B_{t_k}) | \mathcal{F}_s] = X^{(n)}_s$$

because $X^{(n)}_s$ is \mathcal{F}_s-measurable and by the properties of conditional expectation (see Appendix A)

$$\mathbb{E}[a_k \cdot (B_{t_{k+1}} - B_{t_k}) | \mathcal{F}_s] = \mathbb{E}[\mathbb{E}[a_k \cdot (B_{t_{k+1}} - B_{t_k}) | \mathcal{F}_t] | \mathcal{F}_s] = \mathbb{E}[a_k \cdot \mathbb{E}((B_{t_{k+1}} - B_{t_k}) | \mathcal{F}_t) | \mathcal{F}_s] = 0. \quad (2.8)$$

Since $X^{(n)}_t - X^{(m)}_t$ is a martingale, by Doob’s maximal inequality
2.2 Stochastic Integration

\[P \left(\sup_{t \in [0, T]} |X_t^{(n)} - X_t^{(m)}| \geq \varepsilon \right) \leq \frac{1}{\varepsilon^2} E[|X_T^{(n)} - X_T^{(m)}|^2] = \frac{1}{\varepsilon^2} \|f_n - f_m\|^2_{L^2(\mathbb{R}^d \times dP)} \]

for any \(\varepsilon > 0 \). Choose a subsequence \(n_k \) such that \(\|f_{n_k+1} - f_{n_k}\|^2_{L^2(\mathbb{R}^d \times dP)} \leq 2^{-3k} \) and use the previous estimate for \(\varepsilon = 2^{-k} \) to get \(P[\sup_{t \in [0, T]} |X_t^{(n_k+1)} - X_t^{(n_k)}| \geq 2^{-k}] \leq 2^{-k} \). By the Borel–Cantelli lemma, there exist random variable \(N(\omega) \) which is almost surely finite and for \(k \geq N(\omega) \),

\[\sup_{t \in [0, T]} |X_t^{(n_k+1)} - X_t^{(n_k)}| < 2^{-k}. \]

Hence the sequence of the continuous processes \((X_t^{(n_k)}) \) converges almost surely uniformly to a continuous process \((X_t) \). Since for any fixed \(t \), \(\lim_{k \to \infty} X_t^{(n_k)} \) in \(L^2(\mathbb{P}) \) is \(\int_0^t f \, dB_s \) then

\[X_t = \int_0^t f \, dB_s \]

almost surely. This also shows that \((X_t) \) is adapted and square integrable.

Finally by the martingale property of \((X_t^{(n)}) \), for any \(0 \leq s < t \leq T \)

\[X_s^{(n)} = E[X_t^{(n)} | \mathcal{F}_s]. \]

Since the random variables \(X_t^{(n)} \) and \(X_t^{(n)} \) converge in \(L^2(\mathbb{P}) \) to \(X_s \) and \(X_t \), respectively, then by the properties of conditional expectation (see Appendix A) we can take limits inside the conditional expected value and hence

\[X_s = E[X_t | \mathcal{F}_s] \]

for any \(0 \leq s < t \leq T \). For the whole \(\mathbb{R}_+ \), the claim follows from the above by taking a countable sequence \(T \nearrow \infty \) and using the uniqueness. \(\square \)

Remark 2.5 The property that we used in (2.8) could be reformulated in the following way: if \((M_t)_{t \in \mathbb{R}_+} \) is a martingale and if \(0 \leq s \leq t \leq u \) and \(Y \) is a \(\mathcal{F}_t \)-measurable bounded random variable, then \(E[Y (M_u - M_t) | \mathcal{F}_s] = 0 \). We say that martingale increments \(M_u - M_t \) are orthogonal to \(\mathcal{F}_t \).

Definition 2.7 For any process \(X_t = \int_0^t f \, dB_s \), define the **quadratic variation** process as

\[\langle X \rangle_t(\omega) = \int_0^t f(s, \omega)^2 \, dt. \]
The process $\langle X \rangle$ is the quadratic variation in the sense of the Eq. (2.1). We postpone the statement of that result. The following result gives a second interpretation of the quadratic variation process.

Theorem 2.3 Let $f \in \mathcal{L}^2$, $X_t = \int_0^t f \, dB_s$ and $\langle X \rangle$, as above. Then $X_t^2 - \langle X \rangle_t$ is a martingale.

Proof We leave as an exercise to check this for bounded, simple $f \in \mathcal{L}^2$. In the general case take a sequence of bounded, simple $f_n \in \mathcal{L}^2$ and define $X_t^{(n)} = \int_0^t f_n \, dB_s$. The claim follows easily from the $L^1(\mathbb{P})$ convergence of $(X_t^{(n)})^2 - \langle X^{(n)} \rangle_t$, which implies the $L^1(\mathbb{P})$ convergence of $\mathbb{E}[(X_t^{(n)})^2 - \langle X^{(n)} \rangle_t | \mathcal{F}_s]$ by the properties of conditional expectation (see Appendix A). □

Next we define a stopping time which can be taught as the time when “some event occurs” so that for each time instant, the question whether this event has already occurred or not before or at that time is a “measurable question”.

Definition 2.9 A random variable $\tau : \Omega \to [0, \infty]$ is called a stopping time with respect to the filtration $(\mathcal{F}_t)_{t \in \mathbb{R}^+}$ if for all $t \geq 0$, $\{ \omega : \tau(\omega) \leq t \} \in \mathcal{F}_t$.

An example of a stopping time is $\tau_A = \inf \{ t \in \mathbb{R}_{\geq 0} : B_t \in A \}$ where A is a closed or open set in \mathbb{R}.

One way to describe the following result is that by that proposition, the pathwise interpretation of the Itô integral makes sense: if two integrands have the same paths up to a stopping time, then the integrals also agree up to that stopping time. For the proof see Appendix B.

Proposition 2.7 If τ is a stopping time and $f \in \mathcal{L}^2$ and $g \in \mathcal{L}^2$ processes such that $f(t, \omega) = g(t, \omega)$ for any (t, ω) such that $t \leq \tau(\omega)$, then for almost all ω

$$
\int_0^t f \, dB_s(\omega) = \int_0^t g \, dB_s(\omega)
$$

for all $t \leq \tau(\omega)$.

2.2.2.2 Localization and a General Class of Integrands

At this point, we have the Itô integral defined for any measurable, adapted process f such that $\mathbb{E}[\int_0^T f^2 \, dt] < \infty$ for any $T \in (0, \infty)$. However, we would like to have a larger class of processes that includes at least all the continuous processes, such as $f(t, \omega) = \exp(B_t(\omega)^3)$ which is an example of a process that doesn’t belong to \mathcal{L}^2.

Definition 2.10 The class $\mathcal{L}^2_{\text{loc}}$ is defined to be the set of measurable, adapted process f such that almost surely

$$
\int_0^T f(t, \cdot)^2 \, dt < \infty
$$
for any $T \in (0, \infty)$.

Fix some $f \in \mathcal{L}_{\text{loc}}^2$. Define a stopping time

$$
\tau_n(\omega) = \inf \left\{ t \in \mathbb{R}_+ : \int_0^t f(s, \omega)^2 ds \geq n \right\}.
$$

It follows from $f \in \mathcal{L}_{\text{loc}}^2$, that $\tau_n \nrightarrow \infty$ almost surely as $n \to \infty$.

Let $f_n(t, \omega) = f(t, \omega) 1_{t \leq \tau_n(\omega)}$. Then $f_n \in \mathcal{L}^2$ and we can define the Itô integral

$$
X_t^{(n)}(\omega) = \int_0^t f_n d\mathcal{B}_s.
$$

Since $f_n(t, \omega) = f_m(t, \omega)$ for all (t, ω) such that $t \leq (\tau_n \land \tau_m)(\omega)$ and since $\tau_n \land \tau_m$ is a stopping time, by Proposition 2.7 for almost all ω,

$$
X_t^{(n)}(\omega) = X_t^{(m)}(\omega)
$$

for $t \leq (\tau_n \land \tau_m)(\omega)$.

For each fixed ω, this is a strong mode of convergence: there is a finite $n_0(\omega)$ such that $X_t^{(n)}(\omega) = X_t^{(m)}(\omega)$ for any $n, m \geq n_0(\omega)$. Define now a process $(X_t)_{t \in \mathbb{R}_+}$ on the event $\{\tau_n \nrightarrow \infty\}$

$$
X_t(\omega) = X_t^{(n)}(\omega)
$$

where $n \in \mathbb{N}$ is any number satisfying $\tau_n(\omega) \geq t$. The complement of the event $\{\tau_n \nrightarrow \infty\}$ has zero probability and there we can define $X_t = 0$ identically, say.

Definition 2.11 The Itô integral of $f \in \mathcal{L}_{\text{loc}}^2$ is defined as

$$
\int_0^t f d\mathcal{B}_s(\omega) = X_t(\omega) = X_t^n(\omega)
$$

where $n \in \mathbb{N}$ is any number satisfying $\tau_n(\omega) \geq t$ and $X_t^n(\omega)$ is as above.

For any continuous process $(X_t)_{t \in \mathbb{R}_+}$ and for any stopping time τ, define a stopped process $(X^\tau_t)_{t \in \mathbb{R}_+}$ by $X^\tau_t = X_{t \land \tau}$. The continuity of $(X_t)_{t \in \mathbb{R}_+}$ guarantees that X^τ_t is measurable.

Definition 2.12 A continuous process $(M_t)_{t \in \mathbb{R}_+}$ adapted to $(\mathcal{F}_t)_{t \in \mathbb{R}_+}$ is called local martingale if there exist a sequence of stopping times $0 \leq \tau_1 \leq \tau_2 \leq \ldots$ such that $\mathbb{P}(\tau_k \nrightarrow \infty) = 1$ and for each k, M^τ_k is a martingale. It is a local square integrable martingale, if each $(M_t^\tau_k)_{t \in \mathbb{R}_+}$ is a square integrable martingale.

Remark 2.7 The use of stopping times of similar to τ_n, in Definitions 2.11 and 2.12, is called localization of the processes.

The next theorem lists the properties of Itô integral in its most general form. The theorem follows from the properties of the Itô integral for \mathcal{L}^2-integrands and from the construction of the integral using localization. See Appendix B for the proof of the last statement.

8The minimum of two stopping times is a stopping time.
Theorem 2.4 For any $f \in L_2^{loc}$, the processes $X_t = \int_0^t f \, dB_s$ and $X_t^2 - \langle X \rangle_t$ are continuous local martingale. Furthermore, $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ has finite quadratic variation and almost surely for any t, $V_X^{(2)}(t) = \langle X \rangle_t$.

2.3 Itô’s Formula

2.3.1 Itô’s Formula for a Brownian Motion

Itô’s formula is a result of central importance in stochastic calculus. We present first its version for a Brownian motion. By Itô’s formula, functions of Brownian motion can be written as sum of a stochastic integral and an integral with respect to dt.

Theorem 2.5 (Itô’s formula for a Brownian motion) Let $F : \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}$ be a continuous function such that \dot{F}, F', F'' exist and are continuous, where

$$
\dot{F}(t,x) = \frac{\partial F}{\partial t}(t,x), \quad F'(t,x) = \frac{\partial F}{\partial x}(t,x) \quad \text{and} \quad F''(t,x) = \frac{\partial^2 F}{\partial x^2}(t,x).
$$

Then almost surely

$$
F(t, B_t) = F(0, B_0) + \int_0^t \dot{F}(s, B_s)ds + \int_0^t F'(s, B_s)dB_s + \frac{1}{2} \int_0^t F''(s, B_s)ds
$$

(2.9)

for any $t \in \mathbb{R}_+$. For the previous equation we will use the shorthand notation

$$
dF(t, B_t) = \dot{F}(t, B_t)dt + F'(t, B_t)dB_t + \frac{1}{2} F''(t, B_t)dt.
$$

Proof (A sketch) The proof is based on the Taylor expansion of $F(t, x)$ in both of its variables. Take a partition π of $[0, t]$ and write a telescoping sum

$$
F(t, B_t) - F(0, B_0) = \sum_{k=0}^{m(\pi)-1} (F(t_{k+1}, B_{k+1}) - F(t_k, B_k)).
$$

By the mean value theorem

$$
F(t_{k+1}, B_{k+1}) - F(t_k, B_k) = [F(t_{k+1}, B_{k+1}) - F(t_k, B_{k+1})] + [F(t_k, B_{k+1}) - F(t_k, B_k)]
$$

$$
= \frac{F(t_{k+1}, B_{k+1}) - F(t_k, B_{k+1})}{\dot{F}(t_k, \eta_k)} + F'(t_k, B_k)(B_{k+1} - B_k) + \frac{1}{2} F''(t_k, \eta_k)(B_{k+1} - B_k)^2
$$

where η_k is a $\mathcal{F}_{t_{k+1}}$-measurable random variable that lies on the interval between B_k and B_{k+1}. Take a sequence of partitions π_n such that $mesh(\pi_n) \to 0$ as $n \to \infty$.

2.3 Itô’s Formula

The claim is that the sums $\sum a_k$, $\sum b_k$ and $\sum c_k$ will converge to each of the three integrals in (2.9), respectively. The convergence will be almost sure along suitable subsequences of π_n. For the rest of the proof see Appendix B. □

Example 2.2 Let $F(x) = x^2/2$ and let $(B_t)_{t \in \mathbb{R}_+}$ be a one-dimensional Brownian motion with $B_0 = 0$, then $\frac{1}{2}B_t^2 = \int_0^t B_s dB_s + \frac{1}{2} \int_0^t f^2(s) ds$ by Theorem 2.5 and hence after rearranging the terms $\int_0^t B_s dB_s = \frac{1}{2}B_t^2 - \frac{1}{2}t$ which is in agreement with the result we obtained by directly applying the definition of Itô integral in Example 2.1.

Remark 2.8 The proof of Theorem 2.5 uses (i) continuity of $t \mapsto B_t$ and the facts that (ii) B_t and (iii) $B_t^2 - t$ are martingales. It is possible to use the same proof to derive the formula $\mathbb{E}[f(X_t)|\mathcal{F}_s] = f(X_s) + \frac{1}{2} \int_s^t \mathbb{E}[f''(X_u)|\mathcal{F}_s] du$ for any $s < t$ and any adapted process X_t satisfying the properties (i)–(iii). If this formula is applied to the function $f(x) = \exp(i \theta x)$, an argument using the characteristic function very similar to the proof of Theorem 2.8 shows the next results.

Theorem 2.6 (Lévy’s characterization of Brownian motion) Let $(X_t)_{t \in \mathbb{R}_+}$ be a continuous local martingale with $X_0 = 0$. If $(X_t^2 - t)_{t \in \mathbb{R}_+}$ is a local martingale, then $(X_t)_{t \in \mathbb{R}_+}$ is a standard Brownian motion.

2.3.2 Itô’s Formula for Semimartingales

Henceforth, we’ll write the time parameter of the integrands explicitly. Let’s first study two stochastic integrals with respect to a common Brownian motion

$$X_t = \int_0^t f_s dB_s, \quad Y_t = \int_0^t g_s dB_s$$

where $f, g \in L^2_{\text{loc}}$. Their (quadratic) covariation process is defined as

$$\langle X, Y \rangle_t = \int_0^t f_s g_s ds.$$

Then we notice that it satisfies the relation $4\langle X, Y \rangle_t = \langle X + Y \rangle_t - \langle X - Y \rangle_t$. A similar relation can be written for the product X_tY_t and a sum of the form $\sum_k (X_{t_{k+1}} - X_{t_k})(Y_{t_{k+1}} - Y_{t_k})$. Consequently, $X_tY_t - \langle X, Y \rangle_t$ is a local martingale and along partitions of $[0, t]$

$$\lim_{\text{mesh}(\pi) \to 0} \sum_{k=0}^{m(\pi)-1} (X_{t_{k+1}} - X_{t_k})(Y_{t_{k+1}} - Y_{t_k}) = \langle X, Y \rangle_t$$ (2.10)

in probability.
Let’s then consider the case of two stochastic integrals with respect to independent Brownian motions. If \((B^{(1)}, B^{(2)})\) is a standard two-dimensional Brownian motion and

\[
X_t = \int_0^t f_s \, dB^{(1)}_s, \quad Y_t = \int_0^t g_s \, dB^{(2)}_s
\]

where \(f, g \in \mathcal{L}^2_{\text{loc}}\), then \(X_tY_t\) is a local martingale. The covariation process is \(\langle X, Y \rangle_t = 0\) and it satisfies (2.10) together with \((X_t)_{t \in \mathbb{R}_{\geq 0}}\) and \((Y_t)_{t \in \mathbb{R}_{\geq 0}}\). These statements can be verified in the same manner as Theorem 2.4.

In the most general case, let \((B^{(1)}_t, B^{(2)}_t, \ldots, B^{(m)}_t)\) be a standard \(m\)-dimensional Brownian motion. Let

\[
X_t = X_0 + \int_0^t f_s \, ds + \sum_{k=1}^m \int_0^t g^{(k)}_s \, dB^{(k)}_s
\]

\[
Y_t = Y_0 + \int_0^t \hat{f}_s \, ds + \sum_{k=1}^m \int_0^t \hat{g}^{(k)}_s \, dB^{(k)}_s
\]

where \(X_0\) and \(Y_0\) are \(\mathcal{F}_0\)-measurable random variables, \(g^{(k)}, \hat{g}^{(k)} \in \mathcal{L}^2_{\text{loc}}\) and \(f, \hat{f}\) are measurable, adapted to \((F_t)_{t \in \mathbb{R}_+}\), and satisfy

\[
P \left[\int_0^t |f_s| \, ds < \infty \text{ for all } t \in \mathbb{R}_+ \right] = 1.
\]

Then since integrals \(\int_0^t f_s \, ds\) have (locally) finite total variation, by the above it is natural to define

\[
\langle X \rangle_t = \sum_{k=1}^m \int_0^t \left(g^{(k)}_s \right)^2 \, ds, \quad \langle Y \rangle_t = \sum_{k=1}^m \int_0^t \left(\hat{g}^{(k)}_s \right)^2 \, ds, \quad \langle X, Y \rangle_t = \sum_{k=1}^m \int_0^t g^{(k)}_s \hat{g}^{(k)}_s \, ds
\]

which are the quadratic variation and covariation processes also in the sense of (2.1) and (2.10).

Definition 2.13 We call a process of the form (2.11) a *semimartingale* and use a shorthand notation \(dX_t = f_t \, dt + \sum_{k=1}^m \hat{g}^{(k)}_t \, dB^{(k)}_t\).

Remark 2.9 This is a slight abuse of standard terminology. More generally, semimartingale is any process that is sum of an adapted finite variation process and a local martingale.

Next we present a version of Itô’s formula for semimartingales. An interesting viewpoint to this result is that the class of semimartingales is closed under forming new processes \(F(X^{(1)}_t, \ldots, X^{(n)}_t)\) from semimartingales \((X^{(k)}_t)_{t \in \mathbb{R}_{\geq 0}}, k = 1, 2, \ldots, n\).

Theorem 2.7 (Itô’s formula for semimartingales) Let \(1 \leq l \leq n\). Let \(X^{(j)}_t\) be semimartingales
for all $t \in \mathbb{R}_+$, let $F : \mathbb{R}^n \rightarrow \mathbb{R}$ be a continuous function such that ∂F exists and is continuous for all $1 \leq i \leq n$ and that $\partial_{x_i, x_j} F$ exists and is continuous for all $1 \leq i, j \leq l$.

Then $Y_t = F(X^{(1)}_t, \ldots, X^{(n)}_t)$ is a semimartingale and almost surely

$$dY_t = \sum_{j=1}^{n} \left\{ \partial_{x_j} F(X^{(1)}_t, \ldots, X^{(n)}_t) f_t^{(j)} dt + \sum_{k=1}^{m} \partial_{x_k} F(X^{(1)}_t, \ldots, X^{(n)}_t) g_t^{(j,k)} dB_t^{(k)} \right\} + \frac{1}{2} \sum_{i,j=1}^{l} \sum_{k=1}^{m} \partial_{x_i, x_j} F(X^{(1)}_t, \ldots, X^{(n)}_t) g_t^{(i,k)} g_t^{(j,k)} dt$$

for all $t \in \mathbb{R}_+$. A compact way to write the expression is $dY_t = \sum_{j=1}^{n} \left(\partial_{x_j} F \right) dX_t^{(j)} + \frac{1}{2} \sum_{i,j=1}^{l} \left(\partial_{x_i, x_j} F \right) d\langle X^{(i)} \rangle \langle X^{(j)} \rangle_t$.

Remark 2.10 Note that the theorem includes the case when F depends explicitly on time: let $l < n$ and take $X^{(n)}_t = t$. Theorem 2.5 is a special case of Theorem 2.7.

Remark 2.11 (Rules of stochastic calculus) Let $Y_t = F(X^{(1)}_t, \ldots, X^{(n)}_t)$. The reader can memorize Itô’s formula for Y_t by writing formally $Z_t^\delta dt = Z_t + dZ_t$ for any semimartingale Z_t, taking the Taylor expansion of F at $(X^{(1)}_t, \ldots, X^{(n)}_t)$ and using

$$d\delta^2 = 0, \quad dt dB^{(i)}_t = 0, \quad dB^{(i)}_t dB^{(j)}_t = \delta_{ij} dt.$$

Example 2.3 (Norm of a Brownian motion) Let $(B^{(1)}_t, \ldots, B^{(m)}_t)$ be m-dimensional standard Brownian motion, $m \geq 2$, started away from the origin and let $F(x_1, \ldots, x_m) = (\sum_{k=1}^{m} x_k^2)^{1/2}$. By Itô’s formula, $Y_t = F(B^{(1)}_t, \ldots, B^{(n)}_t)$ satisfies

$$dY_t = \sum_k \frac{B^{(k)}_t dB^{(k)}_t}{Y_t} + \frac{m-1}{2Y_t} dt.$$

2.4 Further Topics in Stochastic Calculus

2.4.1 When Is a Semimartingale a Local Martingale?

The following result is based on the observation that $\int_0^t f_j ds$ has finite total variation, where as for every continuous martingale it is infinite. The proof is given in Appendix B. The result will be extremely useful in conjunction with Itô’s formula.
Lemma 2.1 Let $dX_t = \sum s_t^{(k)} dB_t^{(k)} + f_t dt$ be a semimartingale. Then it is a local martingale if and only if almost surely $f_t = 0$ for almost all t.

Example 2.4 Let $F : \mathbb{R} \to \mathbb{R}$ be smooth, $\lambda \in \mathbb{R} \setminus \{0\}$ and suppose that $F(B_t) e^{\lambda t}$ is a martingale. Then $d(F(B_t) e^{\lambda t}) = F'(B_t) e^{\lambda t} dB_t + (\lambda F(B_t) + \frac{1}{2} F''(B_t)) e^{\lambda t} dt$ by Itô’s formula. By Lemma 2.1, it holds that $\lambda F(B_t) + \frac{1}{2} F''(B_t) = 0$ for all t. This is possible only if F satisfies $\lambda F(x) + \frac{1}{2} F''(x) = 0$ for all x. Thus

$$F(x) = C_1 \exp\left(\sqrt{-2\lambda} t\right) + C_2 \exp\left(-\sqrt{-2\lambda} t\right), \quad \text{when } \lambda < 0,$$

$$F(x) = C_1 \sin(\sqrt{2\lambda} t) + C_2 \cos(\sqrt{2\lambda} t), \quad \text{when } \lambda > 0.$$

Here $C_1, C_2 \in \mathbb{R}$ are constants.

2.4.2 Time Changes of Local Martingales and Semimartingales

As usual, let (Ω, \mathcal{F}, P) be a probability space with a filtration $(\mathcal{F}_t)_{t \geq 0}$ and let $(B_t)_{t \in \mathbb{R}_{\geq 0}}$ be a standard one-dimensional Brownian motion with respect to $(\mathcal{F}_t)_{t \in \mathbb{R}_{\geq 0}}$. Let’s start this section by making the following definition.

Definition 2.14 If τ is a stopping time with respect to $(\mathcal{F}_t)_{t \in \mathbb{R}_{\geq 0}}$, define the stopping time σ-algebra as $\mathcal{F}_\tau = \{ A \in \mathcal{F} : A \cap \{ \tau \leq t \} \in \mathcal{F}_t \text{ for all } t \in \mathbb{R}_{\geq 0} \}$.

Remark 2.12 If $s \in \mathbb{R}_{\geq 0}$ is a constant and $\tau = s$ almost surely, then it’s easy to check that $\mathcal{F}_\tau = \mathcal{F}_s$. So the notation \mathcal{F}_τ and the concept of stopping time σ-algebra is consistent with the earlier definitions.

In the same way, as \mathcal{F}_t can be thought as the information available at time t, a stopping time σ-algebra \mathcal{F}_τ can be thought as the information available at a random time τ. The main reason to introduce the stopping time σ-algebra is time changes and analysis of martingales under time changes. See Appendix A for the optional stopping theorem which a result that extends the martingale property from non-random time instances to stopping times.

The following theorem is an application of Itô’s formula. It is a special case of more general result that any continuous local martingale is a time-change of a Brownian motion. The proof of the general result would follow the same lines if we had established the theory of the stochastic integral with respect to local martingales and we had corresponding Itô’s formula available. For an illustration of this result see Fig. 2.1.

Theorem 2.8 Let $(X_t)_{t \in \mathbb{R}_{\geq 0}}$ be a local martingale defined by

$$X_t = \sum_{k=1}^m \int_0^t s_s^{(k)} dB_s^{(k)}.$$
Fig. 2.1 On the left, an instance of Brownian motion \((B_t)_{t \in \mathbb{R}_{\geq 0}}\) is plotted with dots and the corresponding instance of \((X_t)_{t \in \mathbb{R}_{\geq 0}} = ((1/2) (B^2_t - t))_{t \in \mathbb{R}_{\geq 0}}\) with a solid line. On the right, the time change of \((X_t)_{t \in \mathbb{R}_{\geq 0}}\) plotted with a solid line and the change of time, which is the inverse function of \(t \mapsto \langle X \rangle_t = \int_0^t B^2_s \, ds\), is plotted with dots.

(a) A sample of complex Brownian motion stopped at its exit time from the disc.
(b) Conformal image of the same sample under a map taking the disc onto a sector.

Fig. 2.2 Illustration of conformal invariance of Brownian motion. The colors indicate time. We notice that the appearances of the paths are similar in both pictures except that the time is changed by a local factor when we move from the first picture to the second one.

where \(g^{(k)}_t \in \mathcal{L}^2_{\text{loc}}\). Let \((\sigma_r)_{r \in \mathbb{R}_{\geq 0}}\) be the set of stopping times

\[
\sigma_r = \inf \{ t \geq 0 : \langle X \rangle_t \geq r \}
\]

where \(\langle X \rangle_t = \sum_{k=1}^m \int_0^t (g^{(k)}_s)^2 \, ds\) is the quadratic variation process as before. Assume that almost surely \(\langle X \rangle_t \to \infty\) as \(t \to \infty\). Then the process \((Y_t)_{t \in \mathbb{R}_{\geq 0}}\) defined by
\[Y_t = X_\sigma \text{ is a standard one-dimensional Brownian motion with respect to the filtration } \mathcal{F}_\sigma, t \in \mathbb{R}_{\geq 0}. \]

Proof. Since \(\langle X \rangle_t \to \infty \) as \(t \to \infty \), each \(\sigma_t \) is almost surely finite. By the continuity of the mapping \(t \mapsto \langle X \rangle_t \), we have that \(\langle X \rangle_{\sigma_t} = r \).

Let \(M_t = \exp \left(i \theta X_t + \theta^2 \langle X \rangle_t / 2 \right) \). By Itô’s formula, \((M_t)_{t \in \mathbb{R}_{\geq 0}} \) is a continuous local martingale, see also Example 2.4. Note that \((M_t)_{t \in \mathbb{R}_{\geq 0}} \) is a complex valued process, but this causes no problems: we can apply Itô’s formula separately for its real and imaginary parts. The statement that it is a local martingale means that both its real and imaginary parts are local martingales. Since \(M_t^{\sigma_r} = M_{t \wedge \sigma_r} \), is bounded, \((M_t^{\sigma_r})_{t \in \mathbb{R}_{\geq 0}} \) is a martingale. Namely, if \(\tau_n \) is the localizing sequence of \((M_t)_{t \in \mathbb{R}_{\geq 0}} \), then \((M_t^{\sigma_r \wedge \tau_n})_{t \in \mathbb{R}_{\geq 0}} \) is a martingale. Hence by boundedness of \((M_t^{\sigma_r})_{t \in \mathbb{R}_{\geq 0}} \) and by the fact that \(\tau_n \not\to \infty \) almost surely as \(n \to \infty \),

\[
E[M_{t \wedge \tau_n}^{\sigma_r} | \mathcal{F}_s] \to M_s^{\sigma_r} \quad \text{as } n \to \infty,
\]

and therefore by properties of conditional expected value, see Appendix A,

\[
E[M_t^{\sigma_r} | \mathcal{F}_s] = M_s^{\sigma_r}.
\]

Thus \((M_t^{\sigma_r})_{t \in \mathbb{R}_{\geq 0}} \) is a continuous bounded martingale.

Next we apply the optional stopping theorem for stopping times \(\sigma_s \leq \sigma_r \), where \(0 \leq s \leq r \), to show that

\[
E[M_{\sigma_s} | \mathcal{F}_{\sigma_s}] = M_{\sigma_s}.
\]

This implies that for any \(0 \leq s \leq r \) and for any \(\theta \in \mathbb{R} \),

\[
E \left[\exp \left(i \theta (X_{\sigma_s} - X_{\sigma_r}) \right) \bigg| \mathcal{F}_{\sigma_s} \right] = \exp \left(-\frac{\theta^2}{2} (r - s) \right).
\]

The right-hand side of this equation is the characteristic function of a normal random variable with mean 0 and variance \(r - s \). The left-hand side is a conditional version of characteristic function of \(X_{\sigma_s} - X_{\sigma_r} \). That characteristic function is now constant as a \(\mathcal{F}_{\sigma_s} \)-measurable random variable. Therefore the fact that the characteristic function determines the distribution uniquely shows that \(X_{\sigma_r} - X_{\sigma_s} \) is independent from \(\mathcal{F}_{\sigma_s} \) and that \(X_{\sigma_r} - X_{\sigma_s} \) is normally distributed with mean 0 and variance \(r - s \).\(^9\)

\[^9\]If \(E[\exp(i \theta X) | \mathcal{G}] = \psi(\theta_1) \) is a constant as a function of \(\omega \in \Omega \), then for any \(\mathcal{G} \)-measurable random variable \(Z \), it holds that \(\phi(X, Z)(\theta_1, \theta_2) = E[\exp(i \theta_1 X + i \theta_2 Z)] = E[\exp(i \theta_1 Z) \exp(\exp(i \theta_1 X) | \mathcal{G})] = \psi(\theta_1) \phi_Z(\theta_2) \) by properties of conditional expected value. Here \(\phi_Z = E[\exp(i \theta \cdot Y)] \), \(\theta \in \mathbb{R}^n \) is the characteristic function of a \(\mathbb{R}^n \)-valued random variable \(Y \). Thus by the uniqueness theorem of the characteristic function, it follows that \(X \) and \(Z \) are independent and that the law of \(X \) is the unique probability measure on \(\mathbb{R} \) such that \(\phi_X = \psi \). Since this holds in particular for any random variable \(Z = 1_E \), \(E \in \mathcal{G} \), it follows that \(X \) is independent from \(\mathcal{G} \).
Example 2.5 Let us continue the setup of Example 2.3. Let \((W_t)_{t \in \mathbb{R}_{\geq 0}}\) be a process defined by \(W_0\) and \(dW_t = \sum_{k=1}^n (B_t^{(k)}/Y_t) dB_t^{(k)}\), where \(Y_t = F(B_t^{(1)}, \ldots, B_t^{(n)})\). Then
\[
\langle W \rangle_t = \sum_{k=1}^n \int_0^t \frac{(B_s^{(k)})^2}{Y_s^2} \, ds = t.
\]
By Theorem 2.8, \((W_t)_{t \in \mathbb{R}_{\geq 0}}\) is a \((\mathcal{F}_t)_{t \in \mathbb{R}_{\geq 0}}\)-Brownian motion.

The next result gives a general form of a time change for semimartingales. The proof is left as an exercise.

Proposition 2.8 Let \(a_t(\omega)\) be a continuous, positive, adapted process. Define a random time change by setting:
\[
S(t, \omega) = \int_0^t a_r(\omega)^2 \, dr, \quad \sigma(s, \omega) = \inf \{ t \in \mathbb{R}_{\geq 0} : S(t, \omega) \geq s \}
\]
Let \((\tilde{B}_s)_{s \in \mathbb{R}_{\geq 0}}\) be the process defined by
\[
\tilde{B}_s(\omega) = \int_0^{\sigma(s)} a_r \, dB_r(\omega).
\]
Then \((\tilde{B}_s)_{s \in \mathbb{R}_{\geq 0}}\) is a standard one-dimensional Brownian motion with respect to \((\mathcal{F}_{\sigma(s)})_{s \in \mathbb{R}_{\geq 0}}\), and for any continuous, adapted process \(v_t(\omega)\) the following time-change formula holds
\[
\int_0^s v_{\sigma(q)} \, d\tilde{B}_q = \int_0^{\sigma(s)} v_r a_r \, dB_r.
\]
Moreover if \(X_t\) is a semimartingale \(dX_t = u_t dt + v_t dB_t\) then the process \((\tilde{X}_s)_{s \in \mathbb{R}_{\geq 0}}\) defined by \(\tilde{X}_s = X_{\sigma(s)}\) is a semimartingale with respect to \((\mathcal{F}_{\sigma(s)})_{s \in \mathbb{R}_{\geq 0}}\) and \((\tilde{B}_s)_{s \in \mathbb{R}_{\geq 0}}\)
and satisfies
\[
d\tilde{X}_s = \frac{u_{\sigma(s)}}{a_{\sigma(s)}} \, ds + \frac{v_{\sigma(s)}}{a_{\sigma(s)}} \, d\tilde{B}_s.
\]

2.4.3 Stochastic Differential Equations

We present here the rudiments of stochastic differential equations for single variable.

Let \((X_t)_{t \in [0,T]}\) be an \(\mathbb{R}\)-valued continuous stochastic process and let \((B_t)_{t \in \mathbb{R}_{\geq 0}}\) be a standard one-dimensional Brownian motion. We say that \(X_t\) satisfies the stochastic differential equation (SDE)
\[dX_t = F(t, X_t)dt + G(t, X_t)dB_t \]

(2.12)

with initial value \(X_0 = Z \) if for each \(t \in [0, T] \)

\[X_t = Z + \int_0^t F(s, X_s) \, ds + \int_0^t G(s, X_s) \, dB_s. \]

If the process can be constructed in a given probability space with a given filtration and Brownian motion, then \((X_t)_{t \in [0,T]}\) is called a strong solution of the SDE.

Theorem 2.9 Let \((B_t)_{t \in \mathbb{R}_{\geq 0}}\) be one-dimensional Brownian motion and let \(F : [0, T] \times \mathbb{R} \to \mathbb{R} \) and \(G : [0, T] \times \mathbb{R} \to \mathbb{R} \) be measurable maps. Let \(Z \) be \(\mathbb{R} \)-valued square integrable random variable which is independent from \(\sigma(B_t, t \in \mathbb{R}_{\geq 0}) \). Suppose that

\[|F(t, x)| + |G(t, x)| \leq C(1 + |x|) \]
\[|F(t, x) - F(t, y)| + |G(t, x) - G(t, y)| \leq D |x - y|. \]

Then there exist a unique continuous solution \((X_t)_{t \in [0,T]}\) to the stochastic differential Eq. (2.12) with initial value \(X_0 = Z \) with the property that \(X_t \) is adapted to the filtration \(\mathcal{F}_t^{(B,Z)} \) generated by \(Z \) and \(B_s, s \in [0, t] \). Furthermore \(\mathbb{E} \left[\int_0^T |X_t|^2 \, dt \right] < \infty \).

The proof of the theorem is similar to the proofs of existence and uniqueness of solutions of ordinary differential equations, but the details are omitted here.

Example 2.6 Let us continue Examples 2.3 and 2.5. The solution of the SDE

\[dX_t = dB_t + \frac{\delta - 1}{2X_t} \, dt, \]

\(X_0 = x \) is called a Bessel process of dimension \(\delta \in \mathbb{R} \) sent from \(x \). In Examples 2.3 and 2.5 we saw that the norm of \(n \)-dimensional Brownian motion is a \(n \)-dimensional Bessel process. We can use Theorem 2.9 with Proposition 2.7 to show that the solution exists and is unique for all \(\delta \in \mathbb{R} \) up to the time \(\tau = \inf \{ t \in \mathbb{R}_{\geq 0} : \inf_{s \in [0,t]} X_s = 0 \} \) which is the hitting time of 0. Using other methods, we could define it beyond the hitting of 0 for the parameter values \(\delta > 0 \).

Remark 2.13 In the time-homogeneous case, \(F(t, x) = F(x) \) and \(G(t, x) = G(x) \), these solutions \(X_t \) are called diffusions. From another viewpoint, diffusion defines a family of processes with one element for each starting point \(x \in \mathbb{R} \).
2.5 Conformal Invariance of Two-Dimensional Brownian Motion

As usual complex number z is represented in terms of its real and imaginary parts as $z = x + i y$, similarly complex valued function of a complex variable is divided into its real and imaginary parts as $f(z) = u(z) + i v(z)$. Let U be an open set in the complex plane \mathbb{C} and let $z_0 \in U$. The starting point of complex analysis is that the complex derivative f' satisfies $f'(z) = \partial f(z) = \partial_x f(z) = -i \partial_y f(z)$.

The real and imaginary parts of f are harmonic and satisfy the Cauchy–Riemann equations, by Itô’s formula for the difference $f(z) = f(z_0) + \int_{t_0}^{t} f'(z) dz'$ we get

$$\partial_x u = \partial_y v \quad \text{and} \quad \partial_x v = -\partial_y u.$$

The function f is (complex) analytic at z_0: $f(z) = \sum_{n=0}^{\infty} c_n (z - z_0)^n$ which converges absolutely when $|z - z_0| \leq r$ for some $r > 0$.

Remember that u and v are harmonic: $\Delta u = 0 = \Delta v$. We conclude the introduction to stochastic calculus by showing that the complex Brownian motion is conformally invariant (up to a time-change). For an illustration of the result see Fig. 2.2. This justifies more or less all the time that we invested on the technical steps in this chapter and also works as motivation for the treatise of conformally invariant scaling limit in later chapters. Define a complex Brownian motion send from $z_0 \in \mathbb{C}$ as

$$B_t = B_t^C = z_0 + B_t^{(1)} + i B_t^{(2)}.$$

Theorem 2.10 Let $U \subset \mathbb{C}$ be a domain (non-empty connected open set) and let $f : U \to \mathbb{C}$ be analytic. Let $z_0 \in U$ and let B_t be a complex Brownian motion send from $z_0 \in \mathbb{C}$. Let $\tau = \inf\{t \geq 0 : B_t \notin U\}$. Let $Z_t = f(B_{\sigma(t)})$ for $0 \leq t < S(\tau)$ where $\sigma(t) = S^{-1}(t)$ and $S(t) = \int_0^t |f'(B_s)|^2 ds$ for $0 \leq 0 < \tau$. Then Z_t is a complex Brownian motion send from $f(z_0)$ and stopped at $S(\tau)$.

Proof As above write $f = u + i v$. Define $X_t = u(B_t)$ and $Y_t = v(B_t)$. Since u and v are harmonic and satisfy the Cauchy–Riemann equations, by Itô’s formula

\[
\begin{align*}
\, dX_t & = u_1(B_t) dB_t^{(1)} + u_2(B_t) dB_t^{(2)}, \\
\, dY_t & = -u_2(B_t) dB_t^{(1)} + u_1(B_t) dB_t^{(2)},
\end{align*}
\]

where $u_1 = \partial_x u$ and $u_2 = \partial_y u$ are the partial derivatives of u. The dt-terms vanished by $\Delta u = 0 = \Delta v$. Therefore $(X_t)_{t \in \mathbb{R}^+}$ and $(Y_t)_{t \in \mathbb{R}^+}$ are local martingales.

10Define as usual the following partial differential operators $\partial = \frac{1}{i}(\partial_x - i \partial_y)$ and $\overline{\partial} = \frac{1}{i}(\partial_x + i \partial_y)$.

11By the Cauchy–Riemann equations, $u_{xx} + u_{yy} = v_{xy} - v_{yx} = 0$ and similarly for v.

By a direct calculation \[\langle X, Y \rangle_t = 0 \] and
\[\langle X \rangle_t = \langle Y \rangle_t = \int_0^t u_1(B_s)^2 + u_2(B_s)^2 \, ds = \int_0^t |f'(B_s)|^2 \, ds. \]

Here we used the fact that \(f'(z) = u_1(z) - i u_2(z) \). A modification of the proof of Theorem 2.8 shows that the process \(\exp(i \theta_1 X_t + \theta_2 \langle X \rangle_t / 2) \) is a local martingale for any \(\theta_1, \theta_2 \in \mathbb{R} \), and consequently, \((X_{\sigma_t})_{t \in \mathbb{R}_+} \) and \((Y_{\sigma_t})_{t \in \mathbb{R}_+} \) are independent Brownian motions.

2.6 Weak Convergence of Probability Measures

The concept of a scaling limit (such as the scaling limit of the Ising model in Chap. 1) involves sequence objects defined on different probability spaces or even if they could be embedded to the same probability space, there is no hope to find an embedding easily under which the convergence would be almost sure. Therefore it is natural to consider so called weak convergence of probability measures. Typically we consider curves to be elements of the space of continuous functions \(C(\mathbb{R}_{\geq 0}, \mathbb{C}) \) and thus we are interested in probability measures on that space.

Let \(\mathcal{X} \) be a metric space (such as the space \(C(\mathbb{R}_{\geq 0}, \mathbb{C}) \) of continuous complex-valued functions on \(\mathbb{R}_{\geq 0} \)). Then every Borel probability measure on \(\mathcal{X} \) is regular and any measure is determined by the expected values of continuous bounded functions on \(\mathcal{X} \), see [1]. Let \((Q_n)_{n \in \mathbb{Z}_{>0}} \) be a sequence of Borel probability measures on \(\mathcal{X} \).

The link to our setup is that we consider our random objects as \(\mathcal{X} \)-valued random variables and their laws are given by \(Q_n, n \in \mathbb{Z}_{>0} \). The following definition is a very practical approach to convergence of probability measures.

Definition 2.15 We say that \((Q_n)_{n \in \mathbb{Z}_{>0}} \) converges weakly to a Borel probability measure \(\hat{Q} \) on \(\mathcal{X} \) if for every continuous bounded \(f : \mathcal{X} \to \mathbb{R} \) it holds that \(Q_n(f) \to \hat{Q}(f) \) as \(n \) tends to \(\infty \).\(^{12,13}\)

The fact that makes the previous definition useful is that there is a practical way to verify the precompactness of the sequence \((Q_n)_{n \in \mathbb{Z}_{>0}} \).

Definition 2.16 A sequence \((Q_n)_{n \in \mathbb{Z}_{>0}} \) is said to be tight if for each \(\varepsilon > 0 \) there exists a compact set \(K \subset \mathcal{X} \) such that \(Q_n[K] > 1 - \varepsilon \) for all \(n \in \mathbb{Z}_{>0} \).

\(^{12}\)The notation \(Q(f) \) denotes the expected value of \(f \) with respect to the measure \(Q \).

\(^{13}\)There are many equivalent definitions of the weak convergence—by a result named the Portmanteau theorem [1]. The above definition is equivalent to any of the following statements (i) \(\limsup Q_n(C) \leq \hat{Q}(C) \) for all closed sets \(C \) of the space \(\mathcal{X} \), (ii) \(\liminf Q_n(U) \geq \hat{Q}(U) \) for all open sets \(U \) of the space \(\mathcal{X} \), (iii) \(Q_n(A) = \hat{Q}(A) \) for all continuity sets \(A \) of the measure \(Q \). A set \(A \) is a continuity set if \(\hat{Q}(\partial A) = 0 \).
2.6 Weak Convergence of Probability Measures

Theorem 2.11 (Prohorov) If \((Q_n)_{n \in \mathbb{Z}_{>0}}\) is tight, then it is precompact, that is, every subsequence of \((Q_n)_{n \in \mathbb{Z}_{>0}}\) contains a subsequence that converges weakly. Conversely, if \(\mathcal{X}\) is separable and complete and if \((Q_n)_{n \in \mathbb{Z}_{>0}}\) is precompact, then \((Q_n)_{n \in \mathbb{Z}_{>0}}\) is tight.

As a conclusion, a convergent sequence needs to be tight, and establishing tightness is often the first step in showing the weak convergence of probability measures.

For more technical purposes, let us still introduce the following definition.

Definition 2.17 A real-valued random variable \(X\) is tight with respect the sequence \((Q_n)_{n \in \mathbb{Z}_{>0}}\) if for each \(\varepsilon > 0\) there exists a compact set \(M > 0\) such that \(Q_n[|X| \leq M] > 1 - \varepsilon\) for all \(n \in \mathbb{Z}_{>0}\).

Let’s still study tightness in space of continuous function \(C(\mathbb{R}_{\geq 0}, \mathbb{C})\). A standard metric in \(C(\mathbb{R}_{\geq 0}, \mathbb{C})\) is given by

\[
d(f, g) = \sum_{k=1}^{\infty} 2^{-k} \left(1 \wedge \sup \{|f(t) - g(t)| : t \in [0, k]\} \right)
\]

and it is easy to see that the associated topology is given by uniform convergence on compact subsets of \(\mathbb{R}_{\geq 0}\). Define the modulus of continuity of \(f\) on \([0, k]\) as

\[
\omega_{f,k}(\varepsilon) = \sup \{|f(t) - f(s)| : t, s \in [0, k] \text{ s.t. } |t - s| \leq \varepsilon\}.
\]

The next result, based on the Arzelà–Ascoli theorem, characterizes the precompact sets in \(C(\mathbb{R}_{\geq 0}, \mathbb{C})\).

Proposition 2.9 A set \(\mathcal{A} \subset C(\mathbb{R}_{\geq 0}, \mathbb{C})\) is precompact if and only if

\[
\sup_{f \in \mathcal{A}} |f(0)| < \infty \quad (2.13)
\]

and

\[
\lim_{\varepsilon \to 0} \sup_{f \in \mathcal{A}} \omega_{f,k}(\varepsilon) = 0 \quad (2.14)
\]

for all \(k \in \mathbb{Z}_{>0}\).

Proof Since \(C(\mathbb{R}_{\geq 0}, \mathbb{C})\) is a metric space, \(\mathcal{A}\) is precompact if and only if it is sequentially precompact.\(^{14}\) Any sequence \(f_n \in \mathcal{A}\) contains a subsequence converging uniformly on \([0, k]\) if and only if (2.13) and (2.14) hold by the Arzelà–Ascoli theorem, see [1], Theorem 7.2. A diagonal argument shows that \(f_n \in \mathcal{A}\) contains a subsequence converging with respect to the metric \(d\) if and only if (2.13) and (2.14) hold for all \(k \in \mathbb{Z}_{>0}\).

\(^{14}\)A set is sequentially precompact if every sequence in the set contains a converging subsequence.
References

Schramm–Loewner Evolution
Kemppainen, A.
2017, IX, 145 p. 25 illus., 10 illus. in color., Softcover
ISBN: 978-3-319-65327-3