Contents

Preface .. v

0.1 Acknowledgements viii

1 Introduction and Overview 1

1.1 Introduction 1

1.2 Basic principles of quantum mechanics 3

1.2.1 Fundamental axioms of quantum mechanics 3

1.2.2 Principles of measurement theory 5

1.3 Unitary group representations 6

1.3.1 Lie groups 7

1.3.2 Group representations 7

1.3.3 Unitary group representations 10

1.4 Representations and quantum mechanics 11

1.5 Groups and symmetries 12

1.6 For further reading 13

2 The Group $U(1)$ and its Representations 15

2.1 Some representation theory 16

2.2 The group $U(1)$ and its representations 19

2.3 The charge operator 21

2.4 Conservation of charge and $U(1)$ symmetry 24

2.5 Summary 25

2.6 For further reading 26

3 Two-state Systems and $SU(2)$ 27

3.1 The two-state quantum system 28

3.1.1 The Pauli matrices: observables of the two-state quantum system 28

3.1.2 Exponentials of Pauli matrices: unitary transformations of the two-state system 30
3.2 Commutation relations for Pauli matrices 34
3.3 Dynamics of a two-state system 36
3.4 For further reading 37

4 Linear Algebra Review, Unitary and Orthogonal Groups 39
4.1 Vector spaces and linear maps 39
4.2 Dual vector spaces 41
4.3 Change of basis 43
4.4 Inner products 43
4.5 Adjoint operators 47
4.6 Orthogonal and unitary transformations 48
 4.6.1 Orthogonal groups 48
 4.6.2 Unitary groups 50
4.7 Eigenvalues and eigenvectors 51
4.8 For further reading 53

5 Lie Algebras and Lie Algebra Representations 55
5.1 Lie algebras 56
5.2 Lie algebras of the orthogonal and unitary groups 59
 5.2.1 Lie algebra of the orthogonal group 60
 5.2.2 Lie algebra of the unitary group 61
5.3 A summary 62
5.4 Lie algebra representations 63
5.5 Complexification 68
5.6 For further reading 71

6 The Rotation and Spin Groups in Three and Four Dimensions 73
6.1 The rotation group in three dimensions 73
6.2 Spin groups in three and four dimensions 76
 6.2.1 Quaternions 77
 6.2.2 Rotations and spin groups in four dimensions 78
 6.2.3 Rotations and spin groups in three dimensions 79
 6.2.4 The spin group and SU(2) 83
6.3 A summary 85
6.4 For further reading 86

7 Rotations and the Spin $\frac{1}{2}$ Particle in a Magnetic Field 87
7.1 The spinor representation 87
7.2 The spin $\frac{1}{2}$ particle in a magnetic field 89
7.3 The Heisenberg picture 93
7.4 Complex projective space 94
7.5 The Bloch sphere 98
7.6 For further reading 101
8 Representations of SU(2) and SO(3) ... 103
 8.1 Representations of SU(2): classification 104
 8.1.1 Weight decomposition .. 104
 8.1.2 Lie algebra representations: raising
 and lowering operators 106
 8.2 Representations of SU(2): construction 112
 8.3 Representations of SO(3) and spherical harmonics 115
 8.4 The Casimir operator ... 122
 8.5 For further reading .. 124

9 Tensor Products, Entanglement, and Addition of Spin 125
 9.1 Tensor products .. 126
 9.2 Composite quantum systems and tensor products 128
 9.3 Indecomposable vectors and entanglement 129
 9.4 Tensor products of representations 130
 9.4.1 Tensor products of SU(2) representations 131
 9.4.2 Characters of representations 132
 9.4.3 Some examples .. 133
 9.5 Bilinear forms and tensor products 135
 9.6 Symmetric and antisymmetric multilinear forms 136
 9.7 For further reading .. 138

10 Momentum and the Free Particle 139
 10.1 The group R and its representations 140
 10.2 Translations in time and space 142
 10.2.1 Energy and the group R of time translations 142
 10.2.2 Momentum and the group R³ of space
 translations ... 143
 10.3 The energy–momentum relation and the Schrödinger
 equation for a free particle 144
 10.4 For further reading .. 147

11 Fourier Analysis and the Free Particle 149
 11.1 Periodic boundary conditions and the group U(1) 150
 11.2 The group R and the Fourier transform 154
 11.3 Distributions .. 157
 11.4 Linear transformations and distributions 159
 11.5 Solutions of the Schrödinger equation in momentum
 space .. 161
 11.6 For further reading .. 164

12 Position and the Free Particle 165
 12.1 The position operator .. 165
 12.2 Momentum space representation 166
 12.3 Dirac notation ... 167
12.4 Heisenberg uncertainty 169
12.5 The propagator in position space 170
12.6 Propagators in frequency–momentum space 174
12.7 Green’s functions and solutions to the Schrödinger
equations .. 177
12.8 For further reading 180

13 The Heisenberg group and the Schrödinger Representation 181
13.1 The Heisenberg Lie algebra 182
13.2 The Heisenberg group 183
13.3 The Schrödinger representation 185
13.4 For further reading 188

14 The Poisson Bracket and Symplectic Geometry 189
14.1 Classical mechanics and the Poisson bracket 190
14.2 The Poisson bracket and the Heisenberg Lie algebra 192
14.3 Symplectic geometry 195
14.4 For further reading 198

15 Hamiltonian Vector Fields and the Moment Map 199
15.1 Vector fields and the exponential map 200
15.2 Hamiltonian vector fields and canonical
transformations .. 202
15.3 Group actions on M and the moment map 207
15.4 Examples of Hamiltonian group actions 210
15.5 The dual of a Lie algebra and symplectic geometry 211
15.6 For further reading 214

16 Quadratic Polynomials and the Symplectic Group 215
16.1 The symplectic group 216
16.1.1 The symplectic group for $d = 1$ 216
16.1.2 The symplectic group for arbitrary d 220
16.2 The symplectic group and automorphisms of the
Heisenberg group ... 222
16.2.1 The adjoint representation and inner
automorphisms ... 223
16.2.2 The symplectic group as automorphism group 224
16.3 The case of arbitrary d 226
16.4 For further reading 227

17 Quantization .. 229
17.1 Canonical quantization 229
17.2 The Groenewold–van Hove no-go theorem 232
17.3 Canonical quantization in d dimensions 234
17.4 Quantization and symmetries 234
17.5 More general notions of quantization 235
17.6 For further reading 236
18 Semi-direct Products ... 237
 18.1 An example: the Euclidean group 237
 18.2 Semi-direct product groups 239
 18.3 Semi-direct product Lie algebras 241
 18.4 For further reading ... 243

19 The Quantum Free Particle as a Representation of the Euclidean Group ... 245
 19.1 The quantum free particle and representations of $E(2)$... 246
 19.2 The case of $E(3)$.. 251
 19.3 Other representations of $E(3)$ 254
 19.4 For further reading ... 256

20 Representations of Semi-direct Products 259
 20.1 Intertwining operators and the metaplectic representation ... 260
 20.2 Constructing intertwining operators 262
 20.3 Explicit calculations .. 263
 20.3.1 The $SO(2)$ action by rotations of the plane
 for $d = 2$... 263
 20.3.2 An $SO(2)$ action on the $d = 1$ phase space 266
 20.3.3 The Fourier transform as an intertwining operator 268
 20.3.4 An \mathbb{R} action on the $d = 1$ phase space 268
 20.4 Representations of $N \times K$, N commutative 269
 20.5 For further reading ... 272

21 Central Potentials and the Hydrogen Atom 275
 21.1 Quantum particle in a central potential 275
 21.2 $so(4)$ symmetry and the Coulomb potential 280
 21.3 The hydrogen atom ... 284
 21.4 For further reading ... 285

22 The Harmonic Oscillator ... 287
 22.1 The harmonic oscillator with one degree of freedom 288
 22.2 Creation and annihilation operators 290
 22.3 The Bargmann–Fock representation 294
 22.4 Quantization by annihilation and creation operators 297
 22.5 For further reading ... 298
23 Coherent States and the Propagator for the Harmonic Oscillator .. 299
23.1 Coherent states and the Heisenberg group action 299
23.2 Coherent states and the Bargmann–Fock state space 302
23.3 The Heisenberg group action on operators 305
23.4 The harmonic oscillator propagator 305
 23.4.1 The propagator in the Bargmann–Fock representation 306
 23.4.2 The coherent state propagator 307
 23.4.3 The position space propagator 308
23.5 The Bargmann transform .. 309
23.6 For further reading .. 311

24 The Metaplectic Representation and Annihilation and Creation Operators, $d = 1$ 313
24.1 The metaplectic representation for $d = 1$ in terms of a and a^\dagger .. 313
24.2 Intertwining operators in terms of a and a^\dagger 317
24.3 Implications of the choice of z, \overline{z} 320
24.4 $SU(1,1)$ and Bogoliubov transformations 322
24.5 For further reading .. 324

25 The Metaplectic Representation and Annihilation and Creation Operators, arbitrary d 325
25.1 Multiple degrees of freedom 326
25.2 Complex coordinates on phase space and $U(d) \subset Sp(2d, \mathbb{R})$ 327
25.3 The metaplectic representation and $U(d) \subset Sp(2d, \mathbb{R})$ 331
25.4 Examples in $d = 2$ and 3 333
 25.4.1 Two degrees of freedom and $SU(2)$ 333
 25.4.2 Three degrees of freedom and $SO(3)$ 336
25.5 Normal ordering and the anomaly in finite dimensions 338
25.6 For further reading .. 339

26 Complex Structures and Quantization 341
26.1 Complex structures and phase space 341
26.2 Compatible complex structures and positivity 344
26.3 Complex structures and quantization 347
26.4 Complex vector spaces with Hermitian inner product as phase spaces ... 350
26.5 Complex structures for $d = 1$ and squeezed states 353
26.6 Complex structures and Bargmann–Fock quantization for arbitrary d ... 356
26.7 For further reading .. 356
27 The Fermionic Oscillator ... 357
 27.1 Canonical anticommutation relations and the fermionic oscillator ... 357
 27.2 Multiple degrees of freedom 359
 27.3 For further reading .. 362
28 Weyl and Clifford Algebras ... 365
 28.1 The Complex Weyl and Clifford algebras 365
 28.1.1 One degree of freedom, bosonic case 365
 28.1.2 One degree of freedom, fermionic case 367
 28.1.3 Multiple degrees of freedom 368
 28.2 Real Clifford algebras ... 370
 28.3 For further reading .. 372
29 Clifford Algebras and Geometry 373
 29.1 Non-degenerate bilinear forms 373
 29.2 Clifford algebras and geometry 375
 29.2.1 Rotations as iterated orthogonal reflections ... 377
 29.2.2 The Lie algebra of the rotation group and quadratic elements of the Clifford algebra 379
 29.3 For further reading .. 381
30 Anticommuting Variables and Pseudo-classical Mechanics 383
 30.1 The Grassmann algebra of polynomials on anticommuting generators 383
 30.2 Pseudo-classical mechanics and the fermionic Poisson bracket ... 386
 30.3 Examples of pseudo-classical mechanics 390
 30.3.1 The pseudo-classical spin degree of freedom ... 390
 30.3.2 The pseudo-classical fermionic oscillator 391
 30.4 For further reading .. 393
31 Fermionic Quantization and Spinors 395
 31.1 Quantization of pseudo-classical systems 395
 31.1.1 Quantization of the pseudo-classical spin 399
 31.2 The Schrödinger representation for fermions: ghosts 400
 31.3 Spinors and the Bargmann–Fock construction 402
 31.4 Complex structures, $U(d) \subset SO(2d)$ and the spinor representation 405
 31.5 An example: spinors for $SO(4)$ 408
 31.6 For further reading .. 410
32 A Summary: Parallels Between Bosonic and Fermionic Quantization .. 411
33 Supersymmetry, Some Simple Examples 413
 33.1 The supersymmetric oscillator 413
 33.2 Supersymmetric quantum mechanics with a superpotential .. 416
 33.3 Supersymmetric quantum mechanics and differential forms .. 419
 33.4 For further reading 420
34 The Pauli Equation and the Dirac Operator 421
 34.1 The Pauli-Schrödinger equation and free spin \(\frac{1}{2} \) particles in \(d = 3 \) 421
 34.2 Solutions of the Pauli equation and representations of \(E(3) \) 424
 34.3 The \(E(3) \)-invariant inner product 429
 34.4 The Dirac operator 430
 34.5 For further reading 431
35 Lagrangian Methods and the Path Integral 433
 35.1 Lagrangian mechanics 433
 35.2 Noether’s theorem and symmetries in the Lagrangian formalism 438
 35.3 Quantization and path integrals 439
 35.4 Advantages and disadvantages of the path integral 444
 35.5 For further reading 445
36 Multiparticle Systems: Momentum Space Description 447
 36.1 Multiparticle quantum systems as quanta of a harmonic oscillator 448
 36.1.1 Bosons and the quantum harmonic oscillator 448
 36.1.2 Fermions and the fermionic oscillator 450
 36.2 Multiparticle quantum systems of free particles: finite cutoff formalism 452
 36.3 Continuum formalism 456
 36.4 Multiparticle wavefunctions 461
 36.5 Dynamics .. 461
 36.6 For further reading 463
37 Multiparticle Systems and Field Quantization 465
 37.1 Quantum field operators 466
 37.2 Quadratic operators and dynamics 468
 37.3 The propagator in non-relativistic quantum field theory .. 471
The Klein–Gordon Equation and Scalar Quantum Fields

43.1 The Klein–Gordon equation and its solutions

43.2 The symplectic and complex structures on \mathcal{M}

43.3 Hamiltonian and dynamics of the Klein–Gordon theory

43.4 Quantization of the Klein–Gordon theory

43.5 The scalar field propagator

43.6 Interacting scalar field theories: some comments

43.7 For further reading

Symmetries and Relativistic Scalar Quantum Fields

44.1 Internal symmetries

44.1.1 $SO(m)$ symmetry and real scalar fields

44.1.2 $U(1)$ symmetry and complex scalar fields

44.2 Poincaré symmetry and scalar fields

44.2.1 Translations

44.2.2 Rotations

44.2.3 Boosts

44.3 For further reading

U(1) Gauge Symmetry and Electromagnetic Fields

45.1 $U(1)$ gauge symmetry

45.2 Curvature, electric and magnetic fields

45.3 Field equations with background electromagnetic fields

45.4 The geometric significance of the connection

45.5 The non-Abelian case

45.6 For further reading

Quantization of the Electromagnetic Field: the Photon

46.1 Maxwell’s equations

46.2 The Hamiltonian formalism for electromagnetic fields

46.3 Gauss’s law and time-independent gauge transformations

46.4 Quantization in Coulomb gauge

46.5 Space–time symmetries

46.5.1 Time translations

46.5.2 Spatial translations

46.5.3 Rotations

46.6 Covariant gauge quantization

46.7 For further reading
The Dirac Equation and Spin \(\frac{1}{2}\) Fields

- **47.1 The Dirac equation in Minkowski space**
- **47.2 Majorana spinors and the Majorana field**
 - **47.2.1 Majorana spinor fields in momentum space**
 - **47.2.2 Quantization of the Majorana field**
- **47.3 Weyl spinors**
- **47.4 Dirac spinors**
- **47.5 For further reading**

An Introduction to the Standard Model

- **48.1 Non-Abelian gauge fields**
- **48.2 Fundamental fermions**
- **48.3 Spontaneous symmetry breaking**
- **48.4 Unanswered questions and speculative extensions**
 - **48.4.1 Why these gauge groups and couplings?**
 - **48.4.2 Why these representations?**
 - **48.4.3 Why three generations?**
 - **48.4.4 Why the Higgs field?**
 - **48.4.5 Why the Yukawas?**
 - **48.4.6 What is the dynamics of the gravitational field?**
- **48.5 For further reading**

Further Topics

- **49.1 Connecting quantum theories to experimental results**
- **49.2 Other important mathematical physics topics**

Conventions

- **A.1 Bilinear forms**
- **A.2 Fourier transforms**
- **A.3 Symplectic geometry and quantization**
- **A.4 Complex structures and Bargmann-Fock quantization**
- **A.5 Special relativity**
- **A.6 Clifford algebras and spinors**

Exercises

- **B.1 Chapters 1 and 2**
- **B.2 Chapters 3 and 4**
- **B.3 Chapters 5 to 7**
- **B.4 Chapter 8**
- **B.5 Chapter 9**
- **B.6 Chapters 10 to 12**
- **B.7 Chapters 14 to 16**
- **B.8 Chapter 17**
- **B.9 Chapters 18 and 19**
- **B.10 Chapters 21 and 22**
- **B.11 Chapter 23**
B.12 Chapters 24 to 26 649
B.13 Chapters 27 and 28 650
B.14 Chapters 29 to 31 651
B.15 Chapters 33 and 34 653
B.16 Chapter 36 653
B.17 Chapters 37 and 38 654
B.18 Chapters 40 to 42 655
B.19 Chapters 43 and 44 656
B.20 Chapters 45 and 46 656
B.21 Chapter 47 657

Bibliography .. 659

Index .. 665
Quantum Theory, Groups and Representations
An Introduction
Woit, P.
2017, XXII, 668 p. 27 illus., Hardcover
ISBN: 978-3-319-64610-7