Contents

1 Basic Principles of a Silicon Detector .. 1

1.1 Fundamental Silicon Properties .. 1

1.1.1 Just Silicon and Some Impurities 3

1.1.2 The pn-Junction .. 8

1.1.3 SiO$_2$.. 17

1.1.4 Summary of Silicon Properties 20

1.2 Ingredients to Use Silicon as Detector Basis 21

1.3 Working Principle of a Silicon Tracking Device 23

1.3.1 Charge Collection – An Illustration 25

1.3.2 Signal via Induction – Shockley–Ramo Theorem 27

1.3.3 Signal Charge and Particle Position 31

1.3.4 n-Side Isolation of an n-in-n or n-in-p Sensors 35

1.4 Single-Sided – Double-Sided, Double Metal 38

1.5 Noise Contributions .. 41

1.6 Sensor Parameters ... 44

1.6.1 Global Parameters ... 45

1.6.2 Bias-, Guard- and Outside Protection Rings 47

1.6.3 Design of Strip Parameters 50

1.7 Practical Aspects of Handling and Testing Silicon Strip Devices ... 60

1.7.1 What Is the Standard/Exhaustive Set of Quality Assurance Tests? 61

1.8 R&D Methods and Tools: DLTS, TSC, TCT, Edge TCT, TPA-TCT, SIMS and Simulation ... 64

1.8.1 Deep Level Transient Spectroscopy – DLTS 65

1.8.2 Thermally Stimulated Current – TSC 69

1.8.3 Transient Current Technique – TCT 71

1.8.4 Secondary Ion Mass Spectrometry – SIMS 79

1.8.5 Simulation ... 80
1.9 Production of Silicon Sensors .. 81
 1.9.1 From Pure Sand to Detector Grade Silicon 82
 1.9.2 Processing ... 84
 1.9.3 Thinning .. 93
1.10 Readout Electronics – Strip ASICs 95
1.11 Readout Electronics – Pixel Readout Chips – ROCs 102
 1.11.1 Chip Developments for the Future 106
1.12 Other Silicon Detector Types 106
 1.12.1 Hybrid Pixels – An Alternative with a High Number of Channels ... 107
 1.12.2 CMOS Detectors – Monolithic Active Pixels – MAPS ... 107
 1.12.3 Silicon on Insulator Detector – SOI 110
 1.12.4 HV – CMOS/HR – CMOS 112
 1.12.5 Silicon Drift Detector 116
 1.12.6 Depleted Field Effect Transistors DEPFET Detectors ... 117
 1.12.7 3D Silicon Detectors 118
 1.12.8 Low Gain Avalanche Detectors – LGAD 123
 1.12.9 Technology Advantage – Disadvantage – Usage 127
1.13 Some Last Words About the Design of Detectors for High Energy Physics ... 127
1.14 Some Always Unexpected Problems Along the Way 127
2 Radiation Damage in Silicon Detector Devices 135
 2.1 Bulk Damage ... 135
 2.1.1 Damage by Particles 136
 2.1.2 Annealing – Diffusion of Defects 143
 2.2 Defect Analysis, New Materials and Detector Engineering 148
 2.2.1 Study of Microscopic Defects and Their Impact on Macroscopic Parameters 150
 2.2.2 Different Materials and Different Radiation Types – NIEL Violation .. 153
 2.2.3 Double Junction 156
 2.2.4 Sensors After Very High Radiation Levels 160
 2.2.5 Charge Amplification 162
 2.3 Surface Damage ... 164
3 First Steps with Silicon Sensors: NA11 (Proof of Principle) 167
 3.1 From Semiconductor Detectors in the 1950s as Spectroscopes to First Tracking Devices in the 1980s 167
 3.2 Development of the First Silicon Strip Detector for High Energy Physics NA11 and NA32 168
 3.3 Distinguish c Quarks from Others 171
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The DELPHI Microvertex Detector at LEP</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>4.1 Design and Strategies</td>
<td>173</td>
</tr>
<tr>
<td></td>
<td>4.2 The DELPHI Microvertex Detector 1996/1997</td>
<td>177</td>
</tr>
<tr>
<td></td>
<td>4.3 The Silicon Sensors of the DELPHI Microvertex Detector MVD</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>4.4 Implementation of Silicon Labs in Universities to Build a Large</td>
<td>188</td>
</tr>
<tr>
<td></td>
<td>Device</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4.5 Physics with the DELPHI Microvertex Detector</td>
<td>189</td>
</tr>
<tr>
<td>5</td>
<td>CDF: The World’s Largest Silicon Detector in the 20th Century; the</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>First Silicon Detector at a Hadron Collider</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5.1 Historical Evolution of the CDF Vertex Detector</td>
<td>195</td>
</tr>
<tr>
<td></td>
<td>5.2 Design, How to Cover $</td>
<td>\eta</td>
</tr>
<tr>
<td></td>
<td>5.2.1 Tracking System</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>5.3 Six Inch, a New Technology Step for Large Silicon Applications</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td>5.4 Lessons Learned from Operation</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>5.5 The t Discovery, CP Violation in the b Quark Sector</td>
<td>216</td>
</tr>
<tr>
<td>6</td>
<td>CMS: Increasing Size by 2 Orders of Magnitude</td>
<td>219</td>
</tr>
<tr>
<td></td>
<td>6.1 The CMS Pixel Detector – Phase 0 – 2008 – 2016</td>
<td>222</td>
</tr>
<tr>
<td></td>
<td>6.2 The Pixel Phase I Upgrade – Installed February/March 2017</td>
<td>225</td>
</tr>
<tr>
<td></td>
<td>6.3 The CMS Silicon Strip Tracker – SST</td>
<td>231</td>
</tr>
<tr>
<td></td>
<td>6.4 Design, How to Survive 10 Years in the Radiation Environment of</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>LHC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.4.1 Electronics – Quarter Micron Technology</td>
<td>239</td>
</tr>
<tr>
<td></td>
<td>6.4.2 Silicon Sensors</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td>6.5 Construction Issues for Large Detector Systems with Industry</td>
<td>249</td>
</tr>
<tr>
<td></td>
<td>Involvement</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.5.1 Quality Assurance and Problems During the Process</td>
<td>250</td>
</tr>
<tr>
<td></td>
<td>6.5.2 Assembly</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>6.6 Tracker Operation and Performance</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>6.6.1 Lessons Learned from Operation and Maintenance</td>
<td>257</td>
</tr>
<tr>
<td></td>
<td>6.6.2 Signal Processing, Some Key Figures and Tracking</td>
<td>260</td>
</tr>
<tr>
<td></td>
<td>with the CMS Tracker</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6.7 Physics with the CMS Tracker and High-Level Trigger</td>
<td>282</td>
</tr>
<tr>
<td>7</td>
<td>The Design of the CMS Upgrade Tracker and the CMS High Granularity</td>
<td>291</td>
</tr>
<tr>
<td></td>
<td>Forward Calorimeter Equipped with Silicon Sensors for the HL-LHC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.1 The CMS Tracker Upgrade for the HL-LHC – Phase II</td>
<td>293</td>
</tr>
<tr>
<td></td>
<td>7.1.1 Sensors for the HL-LHC CMS Tracker</td>
<td>307</td>
</tr>
<tr>
<td></td>
<td>7.2 The CMS Endcap Calorimeter Upgrade for the HL-LHC</td>
<td>319</td>
</tr>
</tbody>
</table>
Evolution of Silicon Sensor Technology in Particle Physics
Hartmann, F.
2017, XIX, 372 p. 255 illus., 224 illus. in color., Hardcover
ISBN: 978-3-319-64434-9