Contents

1 **Introduction** ... 1
 1.1 Historical Perspective of Optical and Wireless Communication Systems
 1.1.1 Wireless Communication Historical Perspective 2
 1.1.2 Optical Communication Historical Perspective 6
 1.2 Optical Communication Systems and Networks Fundamentals 8
 1.3 Wireless Communication Systems Fundamentals 14
 1.4 Organization of the Book
 1.5 Concluding Remarks
 References .. 27

2 **Propagation Effects in Optical and Wireless Communications**
 Channels, Noise Sources, and Channel Impairments
 2.1 Electromagnetic Field and Wave Equations
 2.1.1 Vector Derivatives (Grad, Div, and Curl)
 in Orthogonal Curvilinear Coordinate System 32
 2.1.2 Vector Derivatives (Grad, Div, and Curl)
 in Cylindrical Polar and Spherical Coordinate Systems 34
 2.2 Propagation of Electromagnetic Waves
 2.2.1 Propagation of Plane Waves
 2.2.2 Vectorial Nature of the Light, Snell’s Law of Refraction, Reflection Coefficients,
 and Total Internal Reflection
 2.2.3 Electromagnetic Potentials and Electromagnetic Waves
 2.2.4 Interference, Coherence, and Diffraction in Optics
 2.2.5 Laser Beam Propagation over the Atmospheric Turbulence Channels
 References .. 85
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.3</td>
<td>Multirate DSP and Resampling</td>
<td>252</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Antenna Arrays</td>
<td>261</td>
</tr>
<tr>
<td>3.2.5</td>
<td>Automatic Gain Control (AGC)</td>
<td>266</td>
</tr>
<tr>
<td>3.3</td>
<td>Concluding Remarks</td>
<td>269</td>
</tr>
<tr>
<td>3.4</td>
<td>References</td>
<td>270</td>
</tr>
<tr>
<td>4</td>
<td>Wireless and Optical Channels Capacities</td>
<td>273</td>
</tr>
<tr>
<td>4.1</td>
<td>Mutual Information, Channel Capacity, and Information Capacity Theorem</td>
<td>273</td>
</tr>
<tr>
<td>4.1.1</td>
<td>Mutual Information and Information Capacity</td>
<td>273</td>
</tr>
<tr>
<td>4.1.2</td>
<td>Capacity of Continuous Channels</td>
<td>276</td>
</tr>
<tr>
<td>4.2</td>
<td>Capacity of Flat-Fading and Frequency-Selective Wireless Fading Channels</td>
<td>280</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Flat-Fading Channel Capacity</td>
<td>280</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Frequency-Selective Fading Channel Capacity</td>
<td>290</td>
</tr>
<tr>
<td>4.3</td>
<td>Capacity of Channels with Memory</td>
<td>294</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Markov Sources and Their Entropy</td>
<td>294</td>
</tr>
<tr>
<td>4.3.2</td>
<td>McMillan Sources and Their Entropy</td>
<td>298</td>
</tr>
<tr>
<td>4.3.3</td>
<td>McMillan-Khinchin Model for Channel Capacity Evaluation</td>
<td>299</td>
</tr>
<tr>
<td>4.4</td>
<td>Calculation of Information Capacity by the Forward Recursion of the BCJR Algorithm</td>
<td>302</td>
</tr>
<tr>
<td>4.5</td>
<td>Information Capacity of Systems with Coherent Optical Detection</td>
<td>307</td>
</tr>
<tr>
<td>4.6</td>
<td>Hybrid Free-Space Optical (FSO)-RF Channel Capacity</td>
<td>308</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Hybrid FSO-RF System Model Description</td>
<td>308</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Adaptive Modulation and Coding (AMC) in Hybrid FSO-RF Communications</td>
<td>311</td>
</tr>
<tr>
<td>4.7</td>
<td>Concluding Remarks</td>
<td>319</td>
</tr>
<tr>
<td>4.8</td>
<td>References</td>
<td>320</td>
</tr>
<tr>
<td>5</td>
<td>Advanced Modulation and Multiplexing Techniques</td>
<td>323</td>
</tr>
<tr>
<td>5.1</td>
<td>Signal Space Theory in Wireless Communications</td>
<td>324</td>
</tr>
<tr>
<td>5.1.1</td>
<td>Geometric Representation of Signals</td>
<td>324</td>
</tr>
<tr>
<td>5.1.2</td>
<td>Modulators and Demodulators</td>
<td>326</td>
</tr>
<tr>
<td>5.1.3</td>
<td>Frequency-Shift Keying (FSK)</td>
<td>331</td>
</tr>
<tr>
<td>5.1.4</td>
<td>M-Ary Pulse Amplitude Modulation (PAM)</td>
<td>332</td>
</tr>
<tr>
<td>5.1.5</td>
<td>Passband Digital Wireless/Optical Transmission</td>
<td>335</td>
</tr>
<tr>
<td>5.2</td>
<td>Multilevel (Two-Dimensional) Modulation Schemes</td>
<td>337</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Two-Dimensional Signal Constellations for Wireless Communications</td>
<td>337</td>
</tr>
<tr>
<td>5.2.2</td>
<td>M-ary PSK Transmitters for Optical Communications</td>
<td>344</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Star-QAM Transmitters for Optical Communications</td>
<td>346</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Square- and Cross-QAM Transmitters for Optical Transmission</td>
<td>347</td>
</tr>
</tbody>
</table>
5.3 Multicarrier Modulation .. 351
 5.3.1 Multicarrier Systems with Nonoverlapping Subcarriers .. 352
 5.3.2 Multicarrier Systems with Overlapping Subcarriers .. 353
 5.3.3 Dealing with Fading Effects on Subcarrier Level .. 356
5.4 MIMO Fundamentals .. 357
5.5 Polarization-Division Multiplexing (PDM) and 4-D Signaling 361
5.6 Spatial-Division Multiplexing and Multidimensional Signaling 365
 5.6.1 SDM in Wireless Communications .. 365
 5.6.2 SDM and Multidimensional Signaling in Fiber-Optics Communications 367
 5.6.3 SDM and Multidimensional Signaling in Free-Space Optical (FSO) Communications 370
5.7 Optimum Signal Constellation Design 373
 5.7.1 Iterative Polar Modulation (IPM) .. 374
 5.7.2 Signal Constellation Design for Rotationally Symmetric Optical Channels 376
 5.7.3 Energy-Efficient Signal Constellation Design .. 377
 5.7.4 Optimum Signal Constellation Design (OSCD) .. 378
5.8 Nonuniform Signaling .. 379
5.9 Concluding Remarks .. 382
References .. 384

6 Advanced Detection Techniques and Compensation of Channel Impairments 387
 6.1 Detection and Estimation Theory Fundamentals 388
 6.1.1 Geometric Representation of Received Signals 388
 6.1.2 Correlation and Matched Filter-Based Receivers Maximizing the Signal-to-Noise Ratio 393
 6.1.3 Optimum and LLR Receivers 396
 6.1.4 Symbol Error Probability Calculation 400
 6.1.5 Estimation Theory Fundamentals 408
 6.2 Wireless Communication Systems Performance 411
 6.2.1 Outage Probability Scenario 411
 6.2.2 Average Error Probability Scenario 412
 6.2.3 Combined Outage and Average Error Probability Scenario .. 413
 6.2.4 Moment-Generating Function (MGF)-Based Approach to Average Error Probability Calculation .. 414
 6.2.5 Performance Evaluation in the Presence of Doppler Spread and Fading 415
6.3 Channel Equalization Techniques

- **ISI-Free Digital Transmission and Partial-Response Signaling**: 417
- **Zero-Forcing Equalizers**: 422
- **Optimum Linear Equalizer in MMSE Sense**: 427
- **Wiener Filtering**: 429
- **Adaptive Equalization**: 430
- **Decision-Feedback Equalization**: 432
- **MLSD (MLSE) or Viterbi Equalization**: 433
- **Blind Equalization**: 436

6.4 Synchronization Techniques

- **Adaptive Modulation Techniques**: 445
- **Variable-Power Variable-Rate Modulation Techniques**: 447
- **Adaptive Coded Modulation**: 453

6.5 Adaptive Modulation Techniques

- **Volterra Series-Based Equalization**: 455
- **Digital Backpropagation in Fiber-Optics Communications**: 457

6.6 Optical Communication Systems with Coherent Optical Detection

- **Balanced Coherent Optical Detection for 2-D Modulation Schemes**: 462
- **Polarization Diversity and Polarization-Division Demultiplexing**: 468
- **Homodyne Coherent Optical Detection Based on PLLs**: 470
- **Phase Diversity Receivers**: 471
- **Dominant Coherent Optical Detection Noise Sources**: 473

6.7 Compensation of Atmospheric Turbulence Effects

- **Adaptive Optics Techniques**: 480
- **SLM-Based Backpropagation Method**: 488

6.10 Concluding Remarks

- **References**: 491

7 OFDM for Wireless and Optical Communications

- **Introduction, OFDM Basics, and Generation of Subcarriers Using Inverse FFT**: 495
- **Introduction to OFDM**: 495
- **OFDM Basics**: 496
- **Generation of OFDM Signals**: 498
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.2</td>
<td>Guard Time, Cyclic Extension, and Windowing</td>
<td>499</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Guard Time and Cyclic Extension</td>
<td>500</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Windowing</td>
<td>504</td>
</tr>
<tr>
<td>7.3</td>
<td>Bandwidth Efficiency of OFDM</td>
<td>505</td>
</tr>
<tr>
<td>7.4</td>
<td>OFDM Parameters Selection, OFDM Building Blocks, Parallel Channel Decomposition</td>
<td>507</td>
</tr>
<tr>
<td>7.4.1</td>
<td>OFDM Parameters Selection</td>
<td>507</td>
</tr>
<tr>
<td>7.4.2</td>
<td>OFDM Building Blocks</td>
<td>508</td>
</tr>
<tr>
<td>7.4.3</td>
<td>OFDM Parallel Channel Decomposition and Channel Modeling</td>
<td>510</td>
</tr>
<tr>
<td>7.5</td>
<td>CO-OFDM Principles, DFT Windowing, Frequency Synchronization, Phase Estimation, and Channel Estimation</td>
<td>516</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Principles of Coherent Optical OFDM (CO-OFDM)</td>
<td>516</td>
</tr>
<tr>
<td>7.5.2</td>
<td>DFT Window Synchronization</td>
<td>517</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Frequency Synchronization in OFDM Systems</td>
<td>518</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Phase Estimation in OFDM Systems</td>
<td>520</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Channel Estimation in OFDM Systems</td>
<td>520</td>
</tr>
<tr>
<td>7.6</td>
<td>Differential Detection in OFDM Systems</td>
<td>525</td>
</tr>
<tr>
<td>7.7</td>
<td>OFDM Applications in Wireless Communications</td>
<td>528</td>
</tr>
<tr>
<td>7.7.1</td>
<td>OFDM in Digital Audio Broadcasting (DAB)</td>
<td>528</td>
</tr>
<tr>
<td>7.7.2</td>
<td>Coded OFDM in Digital Video Broadcasting (DVB)</td>
<td>533</td>
</tr>
<tr>
<td>7.8</td>
<td>OFDM for WiFi, LTE, and WiMAX</td>
<td>545</td>
</tr>
<tr>
<td>7.9</td>
<td>OFDM in Ultra-Wideband Communication (UWC)</td>
<td>549</td>
</tr>
<tr>
<td>7.10</td>
<td>Optical OFDM Applications</td>
<td>552</td>
</tr>
<tr>
<td>7.10.1</td>
<td>Optical OFDM Systems Types</td>
<td>553</td>
</tr>
<tr>
<td>7.10.2</td>
<td>High-Speed Spectrally Efficient CO-OFDM Systems</td>
<td>557</td>
</tr>
<tr>
<td>7.10.3</td>
<td>OFDM in Multimode Fiber Links</td>
<td>563</td>
</tr>
<tr>
<td>7.11</td>
<td>Concluding Remarks</td>
<td>568</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>568</td>
</tr>
<tr>
<td>8</td>
<td>Diversity and MIMO Techniques</td>
<td>575</td>
</tr>
<tr>
<td>8.1</td>
<td>Diversity Techniques</td>
<td>576</td>
</tr>
<tr>
<td>8.1.1</td>
<td>Basic Diversity Schemes</td>
<td>576</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Receiver Diversity</td>
<td>578</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Transmitter Diversity</td>
<td>591</td>
</tr>
<tr>
<td>8.2</td>
<td>MIMO Optical and Wireless Techniques</td>
<td>596</td>
</tr>
<tr>
<td>8.2.1</td>
<td>MIMO Wireless and Optical Channel Models</td>
<td>596</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Parallel Decomposition of Optical and Wireless MIMO Channels</td>
<td>603</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Space-Time Coding: ML Detection, Rank Determinant, and Euclidean Distance Criteria</td>
<td>604</td>
</tr>
</tbody>
</table>
8.2.4 Relevant Classes of Space-Time Codes (STCs) 611
8.2.5 Spatial Division Multiplexing (SDM) 617
8.2.6 Linear and Decision-Feedback MIMO Receivers
 for Uncoded Signals 626
8.2.7 Suboptimum MIMO Receivers for Coded Signals ... 628
8.3 Iterative MIMO Receivers 633
 8.3.1 Factor Graphs Fundamentals 633
 8.3.2 Factor Graphs for MIMO Channels and Channels
 with Memory 635
 8.3.3 Sum-Product Algorithm 637
 8.3.4 Sum-Product Algorithm for Channels
 with Memory 638
 8.3.5 Iterative MIMO Receivers for Uncoded Signals 639
 8.3.6 Factor Graphs for Linear Block and Trellis
 Channel Codes 641
 8.3.7 Iterative MIMO Receivers for Space-Time
 Coded Signals 645
8.4 Broadband MIMO 647
 8.4.1 MIMO-OFDM Scheme 648
 8.4.2 Space-Frequency Block Coding-Based MIMO 649
8.5 MIMO Channel Capacity 650
 8.5.1 Capacity of Deterministic (Static)
 MIMO Channels 651
 8.5.2 Capacity of Random MIMO Channels 653
8.6 MIMO Channel Estimation 659
 8.6.1 Maximum Likelihood (ML) MIMO
 Channel Estimation 660
 8.6.2 Least Squares (LS) MIMO Channel Estimation 661
 8.6.3 Linear Minimum Mean-Square Error (LMMSE)
 MIMO Channel Estimation 661
 8.6.4 Selection of Pilot Signals 663
8.7 Concluding Remarks 664
References ... 665

9 Advanced Coding and Coded Modulation Techniques 669
 9.1 Linear Block Codes Fundamentals 670
 9.2 BCH Codes Fundamentals 675
 9.3 Trellis Description of Linear Block Codes and Viterbi
 Decoding Algorithm 680
 9.4 Convolutional Codes 685
 9.5 RS Codes, Concatenated Codes, and Product Codes 695
 9.6 Coding with Interleaving 698
 9.7 Codes on Graphs Basics 700
 9.8 Turbo Codes 701
 9.9 Turbo Product Codes 711
9.10 LDPC Codes 714
 9.10.1 Binary LDPC Codes 714
 9.10.2 Decoding of Binary LDPC Codes 717
 9.10.3 FPGA Implementation of Binary LDPC Decoders ... 720
 9.10.4 Decoding of Nonbinary LDPC Codes 722
 9.10.5 Design of LDPC Codes 724
 9.10.6 Rate-Adaptive LDPC Coding 729
 9.10.7 Rate-Adaptive Coding Implementations in FPGA ... 732

9.11 Coded Modulation and Unequal Error Protection 741
 9.11.1 Coded Modulation Fundamentals 741
 9.11.2 Trellis-Coded Modulation 744
 9.11.3 Multilevel-Coded Modulation and Unequal Error Protection 748
 9.11.4 Bit-Interleaved Coded Modulation (BICM) 754
 9.11.5 Turbo Trellis-Coded Modulation 756

9.12 Hybrid Multidimensional Coded Modulation Scheme for High-Speed Optical Transmission 758
 9.12.1 Hybrid Coded Modulation 759
 9.12.2 Multilevel Nonbinary LDPC-Coded Modulation (ML-NB-LDPC-CM) for High-Speed Optical Transmissions 764

9.13 Multidimensional Turbo Equalization 767
 9.13.1 Nonlinear Channels with Memory 768
 9.13.2 Nonbinary MAP Detection 769
 9.13.3 Sliding-Window Multidimensional Turbo Equalization 771
 9.13.4 Nonlinear Propagation Simulation Study of Turbo Equalization 774
 9.13.5 Experimental Study of Time-Domain 4-D-NB-LDPC-CM 777
 9.13.6 Quasi-Single-Mode Transmission over Transoceanic Distances Using Few Mode Fibers 782

9.14 Optimized Signal Constellation Design and Optimized Bit-to-Symbol Mappings-Based-Coded Modulation 786
 9.14.1 Multidimensional Optimized Signal Constellation Design 787
 9.14.2 EXIT Chart Analysis of OSCD Mapping Rules 789
 9.14.3 Nonlinear-Optimized Signal Constellation Design-Based Coded Modulation 790
 9.14.4 40 Th/s Transoceanic Transmission Enabled by 8-Ary OSCD 793

9.15 Adaptive Coding and Adaptive Coded Modulation 798
 9.15.1 Adaptive Coded Modulation 798
9.15.2 Adaptive Nonbinary LDPC-Coded Multidimensional Modulation for High-Speed Optical Communications ... 800
9.15.3 Adaptive Hybrid FSO-RF-Coded Modulation .. 802
9.16 Concluding Remarks ... 803
References .. 805

10 Spread Spectrum, CDMA, and Ultra-Wideband Communications 813
10.1 Spread Spectrum Systems ... 814
 10.1.1 Spread Spectrum System Fundamentals .. 815
 10.1.2 Direct Sequence-Spread Spectrum (DS-SS) Systems ... 819
 10.1.3 Frequency Hopping-Spread Spectrum (FH-SS) Systems 836
10.2 Code-Division Multiple Access (CDMA) Systems .. 842
 10.2.1 Signature Waveforms ... 844
 10.2.2 Synchronous and Asynchronous CDMA Models .. 848
10.3 Multiuser Detection ... 857
 10.3.1 Conventional Single-User Correlator Receiver .. 857
 10.3.2 Optimum Multiuser Detection .. 861
 10.3.3 Decorrelating and Linear MMSE Multiuser Detectors 866
 10.3.4 Decision-Driven Multiuser Detectors .. 872
10.4 Optical CDMA Systems ... 875
10.5 Hybrid OFDM-CDMA Systems ... 880
10.6 Ultra-Wideband (UWB) Communications .. 882
10.7 Concluding Remarks .. 892
References .. 893

Appendix .. 899
A.1 Groups .. 899
A.2 Fields .. 902
A.3 Vector Spaces ... 903
A.4 Algebra of Finite Fields .. 905
A.5 Pulse-Position Modulation (PPM) ... 906
A.6 The z-Transform .. 908
 A.6.1 Spread Spectrum System Fundamentals .. 908
 A.6.2 Properties of z-Transform and Common z-Transform Pairs 910
 A.6.3 The Inversion of the z-Transform .. 911
References .. 912

Index .. 913
Advanced Optical and Wireless Communications Systems
Djordjevic, I.B.
2018, XVII, 942 p. 471 illus., 437 illus. in color., Hardcover
ISBN: 978-3-319-63150-9