Contents

1 Introduction ... 1
 1.1 Historical Perspective of Optical and Wireless
 Communication Systems 1
 1.1.1 Wireless Communication Historical Perspective 2
 1.1.2 Optical Communication Historical Perspective 6
 1.2 Optical Communication Systems and Networks Fundamentals 8
 1.3 Wireless Communication Systems Fundamentals 14
 1.4 Organization of the Book 19
 1.5 Concluding Remarks 27
 References .. 27

2 Propagation Effects in Optical and Wireless Communications
Channels, Noise Sources, and Channel Impairments 31
 2.1 Electromagnetic Field and Wave Equations 32
 2.1.1 Vector Derivatives (Grad, Div, and Curl)
 in Orthogonal Curvilinear Coordinate System 34
 2.1.2 Vector Derivatives (Grad, Div, and Curl)
 in Cylindrical Polar and Spherical
 Coordinate Systems 36
 2.2 Propagation of Electromagnetic Waves 38
 2.2.1 Propagation of Plane Waves 38
 2.2.2 Vectorial Nature of the Light, Snell’s Law
 of Refraction, Reflection Coefficients,
 and Total Internal Reflection 40
 2.2.3 Electromagnetic Potentials and Electromagnetic
 Waves .. 56
 2.2.4 Interference, Coherence, and Diffraction in Optics 70
 2.2.5 Laser Beam Propagation over the Atmospheric
 Turbulence Channels 85
2.3 Propagation Effects in Wireless Communication Channels
 2.3.1 Path Loss and Shadowing Propagation Effects in Wireless Communication Channels
 2.3.2 Statistical Multipath Wireless Communication Channel Models

2.4 Signal Propagation in Optical Fibers and Corresponding Channel Impairments
 2.4.1 Fiber Attenuation and Insertion Losses
 2.4.2 Chromatic Dispersion Effects
 2.4.3 Polarization-Mode Dispersion (PMD)
 2.4.4 Fiber Nonlinearities
 2.4.5 Generalized Nonlinear Schrödinger Equation

2.5 Noise Sources in Optical Channels
 2.5.1 Mode Partition Noise
 2.5.2 Reflection-Induced Noise
 2.5.3 Relative Intensity Noise (RIN) and Laser Phase Noise
 2.5.4 Modal Noise
 2.5.5 Thermal Noise
 2.5.6 Spontaneous Emission Noise and Noise Beating Components
 2.5.7 Quantum Shot Noise
 2.5.8 Dark Current Noise
 2.5.9 Crosstalk

2.6 Indoor Optical Wireless Communication Channels
 2.6.1 Infrared Optical Wireless Communications
 2.6.2 Visible Light Communications (VLCs)

2.7 Concluding Remarks

References

3 Components, Modules, and Subsystems

3.1 Key Optical Components, Modules, and Subsystems
 3.1.1 Optical Communications Basics
 3.1.2 Optical Transmitters
 3.1.3 Optical Receivers
 3.1.4 Optical Fibers
 3.1.5 Optical Amplifiers
 3.1.6 Optical Processing Components and Modules
 3.1.7 Principles of Coherent Optical Detection
 3.1.8 Optical Hybrids
 3.1.9 Coherent Optical Balanced Detectors

3.2 Modules/Components Relevant to Wireless Communications
 3.2.1 DSP Basics
 3.2.2 Direct Digital Synthesizer (DDS)
3.2.3 Multirate DSP and Resampling 252
3.2.4 Antenna Arrays .. 261
3.2.5 Automatic Gain Control (AGC) 266
3.3 Concluding Remarks .. 269
References .. 270

4 Wireless and Optical Channels Capacities 273
4.1 Mutual Information, Channel Capacity, and Information
 Capacity Theorem ... 273
 4.1.1 Mutual Information and Information Capacity 273
 4.1.2 Capacity of Continuous Channels 276
4.2 Capacity of Flat-Fading and Frequency-Selective
 Wireless Fading Channels 280
 4.2.1 Flat-Fading Channel Capacity 280
 4.2.2 Frequency-Selective Fading Channel Capacity 290
4.3 Capacity of Channels with Memory 294
 4.3.1 Markov Sources and Their Entropy 294
 4.3.2 McMillan Sources and Their Entropy 298
 4.3.3 McMillan-Khinchin Model for Channel
 Capacity Evaluation 299
4.4 Calculation of Information Capacity by the Forward
 Recursion of the BCJR Algorithm 302
4.5 Information Capacity of Systems with Coherent
 Optical Detection .. 307
4.6 Hybrid Free-Space Optical (FSO)-RF Channel Capacity ... 308
 4.6.1 Hybrid FSO-RF System Model Description 308
 4.6.2 Adaptive Modulation and Coding (AMC)
 in Hybrid FSO-RF Communications 311
4.7 Concluding Remarks ... 319
References .. 320

5 Advanced Modulation and Multiplexing Techniques 323
5.1 Signal Space Theory in Wireless Communications 324
 5.1.1 Geometric Representation of Signals 324
 5.1.2 Modulators and Demodulators 326
 5.1.3 Frequency-Shift Keying (FSK) 331
 5.1.4 M-Ary Pulse Amplitude Modulation (PAM) 332
 5.1.5 Passband Digital Wireless/Optical Transmission 335
5.2 Multilevel (Two-Dimensional) Modulation Schemes 337
 5.2.1 Two-Dimensional Signal Constellations
 for Wireless Communications 337
 5.2.2 M-ary PSK Transmitters for Optical
 Communications .. 344
 5.2.3 Star-QAM Transmitters for Optical
 Communications .. 346
 5.2.4 Square- and Cross-QAM Transmitters
 for Optical Transmission 347
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3</td>
<td>Multicarrier Modulation</td>
<td>351</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Multicarrier Systems with Nonoverlapping Subcarriers</td>
<td>352</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Multicarrier Systems with Overlapping Subcarriers</td>
<td>353</td>
</tr>
<tr>
<td>5.3.3</td>
<td>Dealing with Fading Effects on Subcarrier Level</td>
<td>356</td>
</tr>
<tr>
<td>5.4</td>
<td>MIMO Fundamentals</td>
<td>357</td>
</tr>
<tr>
<td>5.5</td>
<td>Polarization-Division Multiplexing (PDM) and 4-D Signaling</td>
<td>361</td>
</tr>
<tr>
<td>5.6</td>
<td>Spatial-Division Multiplexing and Multidimensional Signaling</td>
<td>365</td>
</tr>
<tr>
<td>5.6.1</td>
<td>SDM in Wireless Communications</td>
<td>365</td>
</tr>
<tr>
<td>5.6.2</td>
<td>SDM and Multidimensional Signaling in Fiber-Optics Communications</td>
<td>367</td>
</tr>
<tr>
<td>5.6.3</td>
<td>SDM and Multidimensional Signaling in Free-Space Optical (FSO) Communications</td>
<td>370</td>
</tr>
<tr>
<td>5.7</td>
<td>Optimum Signal Constellation Design</td>
<td>373</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Iterative Polar Modulation (IPM)</td>
<td>374</td>
</tr>
<tr>
<td>5.7.2</td>
<td>Signal Constellation Design for Rotationally Symmetric Optical Channels</td>
<td>376</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Energy-Efficient Signal Constellation Design</td>
<td>377</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Optimum Signal Constellation Design (OSCD)</td>
<td>378</td>
</tr>
<tr>
<td>5.8</td>
<td>Nonuniform Signaling</td>
<td>379</td>
</tr>
<tr>
<td>5.9</td>
<td>Concluding Remarks</td>
<td>382</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>384</td>
</tr>
<tr>
<td>6</td>
<td>Advanced Detection Techniques and Compensation of Channel Impairments</td>
<td>387</td>
</tr>
<tr>
<td>6.1</td>
<td>Detection and Estimation Theory Fundamentals</td>
<td>388</td>
</tr>
<tr>
<td>6.1.1</td>
<td>Geometric Representation of Received Signals</td>
<td>388</td>
</tr>
<tr>
<td>6.1.2</td>
<td>Correlation and Matched Filter-Based Receivers Maximizing the Signal-to-Noise Ratio</td>
<td>393</td>
</tr>
<tr>
<td>6.1.3</td>
<td>Optimum and LLR Receivers</td>
<td>396</td>
</tr>
<tr>
<td>6.1.4</td>
<td>Symbol Error Probability Calculation</td>
<td>400</td>
</tr>
<tr>
<td>6.1.5</td>
<td>Estimation Theory Fundamentals</td>
<td>408</td>
</tr>
<tr>
<td>6.2</td>
<td>Wireless Communication Systems Performance</td>
<td>411</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Outage Probability Scenario</td>
<td>411</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Average Error Probability Scenario</td>
<td>412</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Combined Outage and Average Error Probability Scenario</td>
<td>413</td>
</tr>
<tr>
<td>6.2.4</td>
<td>Moment-Generating Function (MGF)-Based Approach to Average Error Probability Calculation</td>
<td>414</td>
</tr>
<tr>
<td>6.2.5</td>
<td>Performance Evaluation in the Presence of Doppler Spread and Fading</td>
<td>415</td>
</tr>
</tbody>
</table>
Contents

6.3 Channel Equalization Techniques .. 417
 6.3.1 ISI-Free Digital Transmission and Partial-Response Signaling 417
 6.3.2 Zero-Forcing Equalizers ... 422
 6.3.3 Optimum Linear Equalizer in MMSE Sense 427
 6.3.4 Wiener Filtering ... 429
 6.3.5 Adaptive Equalization .. 430
 6.3.6 Decision-Feedback Equalization 432
 6.3.7 MLSD (MLSE) or Viterbi Equalization 433
 6.3.8 Blind Equalization ... 436
6.4 Synchronization Techniques ... 441
6.5 Adaptive Modulation Techniques ... 445
 6.5.1 Variable-Power Variable-Rate Modulation Techniques 447
 6.5.2 Adaptive Coded Modulation .. 453
6.6 Volterra Series-Based Equalization 455
6.7 Digital Backpropagation in Fiber-Optics Communications 457
6.8 Optical Communication Systems with Coherent Optical Detection 461
 6.8.1 Balanced Coherent Optical Detection for 2-D Modulation Schemes 462
 6.8.2 Polarization Diversity and Polarization-Division Demultiplexing 468
 6.8.3 Homodyne Coherent Optical Detection Based on PLLs 470
 6.8.4 Phase Diversity Receivers .. 471
 6.8.5 Dominant Coherent Optical Detection Noise Sources 473
6.9 Compensation of Atmospheric Turbulence Effects 479
 6.9.1 Adaptive Optics Techniques .. 480
 6.9.2 SLM-Based Backpropagation Method 488
6.10 Concluding Remarks .. 489
References ... 491

7 OFDM for Wireless and Optical Communications 495
7.1 Introduction, OFDM Basics, and Generation of Subcarriers Using Inverse FFT 495
 7.1.1 Introduction to OFDM .. 495
 7.1.2 OFDM Basics ... 496
 7.1.3 Generation of OFDM Signals ... 498
7.2 Guard Time, Cyclic Extension, and Windowing 499
 7.2.1 Guard Time and Cyclic Extension 500
 7.2.2 Windowing 504
7.3 Bandwidth Efficiency of OFDM 505
7.4 OFDM Parameters Selection, OFDM Building Blocks, Parallel Channel Decomposition 507
 7.4.1 OFDM Parameters Selection 507
 7.4.2 OFDM Building Blocks 508
 7.4.3 OFDM Parallel Channel Decomposition and Channel Modeling 510
7.5 CO-OFDM Principles, DFT Windowing, Frequency Synchronization, Phase Estimation, and Channel Estimation 516
 7.5.1 Principles of Coherent Optical OFDM (CO-OFDM) 516
 7.5.2 DFT Window Synchronization 517
 7.5.3 Frequency Synchronization in OFDM Systems 518
 7.5.4 Phase Estimation in OFDM Systems 520
 7.5.5 Channel Estimation in OFDM Systems 520
7.6 Differential Detection in OFDM Systems 525
7.7 OFDM Applications in Wireless Communications 528
 7.7.1 OFDM in Digital Audio Broadcasting (DAB) 528
 7.7.2 Coded OFDM in Digital Video Broadcasting (DVB) 533
7.8 OFDM for WiFi, LTE, and WiMAX 545
7.9 OFDM in Ultra-Wideband Communication (UWC) 549
7.10 Optical OFDM Applications 552
 7.10.1 Optical OFDM Systems Types 553
 7.10.2 High-Speed Spectrally Efficient CO-OFDM Systems 557
 7.10.3 OFDM in Multimode Fiber Links 563
7.11 Concluding Remarks 568
References 568

8 Diversity and MIMO Techniques 575
8.1 Diversity Techniques 576
 8.1.1 Basic Diversity Schemes 576
 8.1.2 Receiver Diversity 578
 8.1.3 Transmitter Diversity 591
8.2 MIMO Optical and Wireless Techniques 596
 8.2.1 MIMO Wireless and Optical Channel Models 596
 8.2.2 Parallel Decomposition of Optical and Wireless MIMO Channels 603
 8.2.3 Space-Time Coding: ML Detection, Rank Determinant, and Euclidean Distance Criteria 604
8.2.4 Relevant Classes of Space-Time Codes (STCs) .. 611
8.2.5 Spatial Division Multiplexing (SDM) .. 617
8.2.6 Linear and Decision-Feedback MIMO Receivers for Uncoded Signals 626
8.2.7 Suboptimum MIMO Receivers for Coded Signals 628
8.3 Iterative MIMO Receivers .. 633
8.3.1 Factor Graphs Fundamentals ... 633
8.3.2 Factor Graphs for MIMO Channels and Channels with Memory 635
8.3.3 Sum-Product Algorithm ... 637
8.3.4 Sum-Product Algorithm for Channels with Memory 638
8.3.5 Iterative MIMO Receivers for Uncoded Signals 639
8.3.6 Factor Graphs for Linear Block and Trellis Channel Codes 641
8.3.7 Iterative MIMO Receivers for Space-Time Coded Signals 645
8.4 Broadband MIMO ... 647
8.4.1 MIMO-OFDM Scheme ... 648
8.4.2 Space-Frequency Block Coding-Based MIMO 649
8.5 MIMO Channel Capacity .. 650
8.5.1 Capacity of Deterministic (Static) MIMO Channels 651
8.5.2 Capacity of Random MIMO Channels .. 653
8.6 MIMO Channel Estimation ... 659
8.6.1 Maximum Likelihood (ML) MIMO Channel Estimation 660
8.6.2 Least Squares (LS) MIMO Channel Estimation 661
8.6.3 Linear Minimum Mean-Square Error (LMMSE) MIMO Channel Estimation 661
8.6.4 Selection of Pilot Signals ... 663
8.7 Concluding Remarks ... 664
References .. 665

9 Advanced Coding and Coded Modulation Techniques 669
9.1 Linear Block Codes Fundamentals ... 670
9.2 BCH Codes Fundamentals ... 675
9.3 Trellis Description of Linear Block Codes and Viterbi Decoding Algorithm 680
9.4 Convolutional Codes ... 685
9.5 RS Codes, Concatenated Codes, and Product Codes 695
9.6 Coding with Interleaving ... 698
9.7 Codes on Graphs Basics ... 700
9.8 Turbo Codes ... 701
9.9 Turbo Product Codes ... 711
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.10</td>
<td>LDPC Codes</td>
<td>714</td>
</tr>
<tr>
<td>9.10.1</td>
<td>Binary LDPC Codes</td>
<td>714</td>
</tr>
<tr>
<td>9.10.2</td>
<td>Decoding of Binary LDPC Codes</td>
<td>717</td>
</tr>
<tr>
<td>9.10.3</td>
<td>FPGA Implementation of Binary LDPC Decoders</td>
<td>720</td>
</tr>
<tr>
<td>9.10.4</td>
<td>Decoding of Nonbinary LDPC Codes</td>
<td>722</td>
</tr>
<tr>
<td>9.10.5</td>
<td>Design of LDPC Codes</td>
<td>724</td>
</tr>
<tr>
<td>9.10.6</td>
<td>Rate-Adaptive LDPC Coding</td>
<td>729</td>
</tr>
<tr>
<td>9.10.7</td>
<td>Rate-Adaptive Coding Implementations in FPGA</td>
<td>732</td>
</tr>
<tr>
<td>9.11</td>
<td>Coded Modulation and Unequal Error Protection</td>
<td>741</td>
</tr>
<tr>
<td>9.11.1</td>
<td>Coded Modulation Fundamentals</td>
<td>741</td>
</tr>
<tr>
<td>9.11.2</td>
<td>Trellis-Coded Modulation</td>
<td>744</td>
</tr>
<tr>
<td>9.11.3</td>
<td>Multilevel-Coded Modulation and Unequal Error Protection</td>
<td>748</td>
</tr>
<tr>
<td>9.11.4</td>
<td>Bit-Interleaved Coded Modulation (BICM)</td>
<td>754</td>
</tr>
<tr>
<td>9.11.5</td>
<td>Turbo Trellis-Coded Modulation</td>
<td>756</td>
</tr>
<tr>
<td>9.12</td>
<td>Hybrid Multidimensional Coded Modulation Scheme for High-Speed Optical Transmission</td>
<td>758</td>
</tr>
<tr>
<td>9.12.1</td>
<td>Hybrid Coded Modulation</td>
<td>759</td>
</tr>
<tr>
<td>9.12.2</td>
<td>Multilevel Nonbinary LDPC-Coded Modulation (ML-NB-LDPC-CM) for High-Speed Optical Transmissions</td>
<td>764</td>
</tr>
<tr>
<td>9.13</td>
<td>Multidimensional Turbo Equalization</td>
<td>767</td>
</tr>
<tr>
<td>9.13.1</td>
<td>Nonlinear Channels with Memory</td>
<td>768</td>
</tr>
<tr>
<td>9.13.2</td>
<td>Nonbinary MAP Detection</td>
<td>769</td>
</tr>
<tr>
<td>9.13.3</td>
<td>Sliding-Window Multidimensional Turbo Equalization</td>
<td>771</td>
</tr>
<tr>
<td>9.13.4</td>
<td>Nonlinear Propagation Simulation Study of Turbo Equalization</td>
<td>774</td>
</tr>
<tr>
<td>9.13.5</td>
<td>Experimental Study of Time-Domain 4-D-NB-LDPC-CM</td>
<td>777</td>
</tr>
<tr>
<td>9.13.6</td>
<td>Quasi-Single-Mode Transmission over Transoceanic Distances Using Few Mode Fibers</td>
<td>782</td>
</tr>
<tr>
<td>9.14</td>
<td>Optimized Signal Constellation Design and Optimized Bit-to-Symbol Mappings-Based-Coded Modulation</td>
<td>786</td>
</tr>
<tr>
<td>9.14.1</td>
<td>Multidimensional Optimized Signal Constellation Design</td>
<td>787</td>
</tr>
<tr>
<td>9.14.2</td>
<td>EXIT Chart Analysis of OSCD Mapping Rules</td>
<td>789</td>
</tr>
<tr>
<td>9.14.3</td>
<td>Nonlinear-Optimized Signal Constellation Design-Based Coded Modulation</td>
<td>790</td>
</tr>
<tr>
<td>9.14.4</td>
<td>40 Tb/s Transoceanic Transmission Enabled by 8-Ary OSCD</td>
<td>793</td>
</tr>
<tr>
<td>9.15</td>
<td>Adaptive Coding and Adaptive Coded Modulation</td>
<td>798</td>
</tr>
<tr>
<td>9.15.1</td>
<td>Adaptive Coded Modulation</td>
<td>798</td>
</tr>
</tbody>
</table>
Advanced Optical and Wireless Communications
Systems
Djordjevic, I.B.
2018, XVII, 942 p. 471 illus., 437 illus. in color.,
Hardcover
ISBN: 978-3-319-63150-9