Chapter 2
Robustness of Homogeneous and Homogeneizable Differential Inclusions

Emmanuel Bernuau, Denis Efimov and Wilfrid Perruquetti

2.1 Introduction

The problem of robustness and stability analysis with respect to external inputs (like exogenous disturbances or measurement noises) for dynamical systems is in the center of attention of many research works [8, 13, 22, 24, 26, 28]. One of the most popular theories, which can be used for this robustness analysis of nonlinear systems, was originated more than 20 years ago [23] and it is based on the Input-to-State Stability (ISS) property and many related notions. The advantages of ISS theory include a complete list of necessary and sufficient conditions, existence of the Lyapunov method extension, a rich variety of stability concepts adopted for different control and estimation problems.

The main tool to check the ISS property for a nonlinear system consists in a Lyapunov function design satisfying sufficient conditions. As usual, there is no generic approach to select a Lyapunov function for nonlinear systems. Therefore, computationally tractable approaches for ISS verification for particular classes of
nonlinear systems are of great importance, and they are highly demanded in applications. In this chapter we are going to propose and extend such techniques for checking ISS and Input-to-State Practical Stability (ISpS) for a class of homogeneous and homogenizable discontinuous systems.

The homogeneity is an intrinsic property of an object on which the flow of a particular vector field, called Euler vector field, operates as a scaling. This property entails a lot of qualitative results for a homogeneous object, and is of particular interest in view of stability purposes. The notion of homogeneity was found useful by many authors [1, 6, 7, 11, 12, 15, 20, 29]. The main feature of this property is that any local property of the system is in fact global. Obviously, some systems are not homogeneous. The homogenization notion has been proposed in [2, 9, 29] and is to homogeneous systems what linearization is to linear system: it allows a system to be locally approximated by a homogeneous one. In the literature, this property is sometimes called “local homogeneity” but we will prefer the terminology “homogenization” to highlight the parallel with linearization. Qualitative properties of the homogeneous approximation are shown to persist locally for the starting system.

The ISS properties of homogeneous or homogenizable continuous systems have been studied in [2, 14, 21]. But continuity assumption is not always verified. For instance, mechanical systems with friction or systems controlled by a Sliding Mode Control (SMC) induce a discontinuous vector field. In this chapter, ISS and ISpS properties for discontinuous systems and systems which dynamics are given by a Differential Inclusion (DI) are provided.

Numerous frameworks have been given to deal with discontinuous systems. We will focus here on the Filippov’s solution [10]. Filippov’s idea is to replace a (discontinuous) vector field by a set-valued map, mapping a point to a set of admissible velocities. The solutions are then absolute continuous curves which derivative belongs to this set of admissible velocities, leading hence to a DI. Different notions of homogeneity for DI have been proposed [4, 10, 17, 18]. In the last paper, a converse homogeneous Lyapunov theorem was proved, on which we shall rely to prove ISS properties. This result was already used to get ISS properties for DI in [5].

In this chapter, our objective is twofold. First, we shall generalize the notion of homogenization to differential inclusions and second we shall formulate conditions of ISS and ISpS properties of discontinuous systems using homogeneity and homogenization. We will present these results using geometric homogeneity to have the most generic formulation.

The outline of the chapter is as follows. Section 2.2 is devoted to the introduction of notations and results that will be used in the sequel. Section 2.3 presents the new framework of homogenization of a DI and the associated stability results. Section 2.4 gives the ISS and ISpS results obtained using homogeneity techniques. Finally, a conclusion will sum up the chapter and will give some perspectives.
2.2 Preliminaries

2.2.1 Notations

We denote \(n \) a positive integer and we will be interested in systems defined on \(\mathbb{R}^n \).
We endow \(\mathbb{R}^n \) with the Lebesgue measure and denote \(\mathcal{M} \) the set of all zero-measure subsets of \(\mathbb{R}^n \). For \(x \in \mathbb{R}^n \) and \(\varepsilon > 0 \), we denote \(B(x, \varepsilon) = \{ x \} \cup B(\varepsilon) \) the open ball centered in \(x \) and of radius \(\varepsilon \). If \(g : \mathbb{R}^n \to \mathbb{R}^p \) is a differentiable mapping, we denote \(d_x g \) the value at point \(x \in \mathbb{R}^n \) of the differential of \(g \); hence, \(d_x g \) is a linear form on \(\mathbb{R}^p \).

We shall consider here locally essentially bounded vector fields. The set of locally essentially bounded vector fields is denoted by \(L_\infty^{\text{loc}}(\mathbb{R}^n, \mathbb{R}^n) \).

Definition 2.1 The set of nonempty compact subsets of \(\mathbb{R}^n \) is denoted by \(\mathcal{F}(\mathbb{R}^n) \). The Hausdorff distance between \(X, Y \in \mathcal{F}(\mathbb{R}^n) \) is defined by:

\[
\mathcal{d}(X, Y) = \max \left(\sup_{x \in X} \mathcal{d}(x, Y), \sup_{y \in Y} \mathcal{d}(y, X) \right),
\]

where the distance between a point and a compact set is defined by

\[
\mathcal{d}(x, Y) = \inf_{y \in Y} \| x - y \|.
\]

Proposition 2.1 The Hausdorff distance defines a distance on \(\mathcal{F}(\mathbb{R}^n) \). Endowed with this distance, \((\mathcal{F}(\mathbb{R}^n), \mathcal{d}) \) is a complete metric space. Moreover, for all \(\lambda \in \mathbb{R} \),

\[
\mathcal{d}(\lambda X, \lambda Y) = |\lambda| \mathcal{d}(X, Y).
\]

We will denote by \(\partial A \) the boundary of a bounded set \(A \) and \(\| A \| = \sup_{a \in A} \| a \| \).
If \(A \) is compact, \(\| A \| = \mathcal{d}(A, \{0\}) \).

Definition 2.2 Let \((E, \mathcal{d})\) be a metric space, and let \(u_k : \mathbb{R}^n \to E \) be a sequence of mappings. We say that this sequence converges uniformly on compact sets to \(u : \mathbb{R}^n \to E \), denoted \(u_k \overset{\text{CUC}}{\longrightarrow} u \), iff for any compact set \(K \subset \mathbb{R}^n \) and for all \(\varepsilon > 0 \) there exists a \(k_0 > 0 \) such that for all \(k > k_0 \), \(\sup_{x \in K} \mathcal{d}(u_n(x), u(x)) < \varepsilon \).

2.2.2 Differential Inclusions

We refer to [3, 10] for the basic definitions and the technical material on set-valued maps and DI. In this section, we will only recall the definitions and results that will be used hereafter, without any proof.

The Filippov’s regularization procedure consists in the construction of a set-valued map \(F \) starting with a vector field \(f \in L_\infty^{\text{loc}}(\mathbb{R}^n, \mathbb{R}^n) \):
\[\mathcal{F}[f](x) = \bigcap_{\varepsilon > 0} \bigcap_{N \in \mathcal{N}} \text{conv}(f(B(x, \varepsilon) \setminus N)). \]

(2.2)

By construction, for all \(x \in \mathbb{R}^n \), the set \(\mathcal{F}[f](x) \) is compact and convex. Moreover, the set-valued map \(\mathcal{F}[f] \) is upper semicontinuous.

In many applications, the DI is given by the set-valued map coming from the Filippov’s procedure. We will therefore focus on set-valued map with the properties inherited by this procedure.

Definition 2.3 Let \(F \) be a set-valued map. We say that \(F \) verifies the *standard assumptions* (SA) if \(F \) is upper semicontinuous and if for any \(x \in \mathbb{R}^n \), \(F(x) \) is a nonempty compact convex set.

2.2.3 Homogeneity

To introduce the notion of geometric homogeneity, the class of Euler vector fields has to be defined.

Definition 2.4 \([16]\) A vector field \(\nu \in C^1(\mathbb{R}^n, \mathbb{R}^n) \) is said to be *Euler* if it is complete and if the origin is a GAS equilibrium of \(-\nu \).

We will always write \(\Phi \) the flow of \(\nu \), that is \(\Phi^s(x) \) is the current state at time \(s \) of the trajectory of \(\nu \) starting from \(x \) at \(s = 0 \). We also denote \(d_s \Phi^s \) the differential of the diffeomorphism \(\Phi^s \) at a fixed \(s \in \mathbb{R} \), taken at \(x \in \mathbb{R}^n \). We are now able to state the classical definitions of geometric homogeneity.

Definition 2.5 Let \(\nu \) be an Euler vector field.

- A function \(V : \mathbb{R}^n \to \mathbb{R} \) is \(\nu \)-homogeneous of degree \(\kappa \in \mathbb{R} \) if:
 \[V(\Phi^s(x)) = e^{\kappa s} V(x) \quad \forall x \in \mathbb{R}^n, \forall s \in \mathbb{R}. \]

- A vector field \(f : \mathbb{R}^n \to \mathbb{R}^n \) is \(\nu \)-homogeneous of degree \(\kappa \in \mathbb{R} \) if:
 \[f(\Phi^s(x)) = e^{\kappa s} d_s \Phi^s f(x) \quad \forall x \in \mathbb{R}^n, \forall s \in \mathbb{R}. \]

(2.3)

The relation (2.3) can be recast under a more compact form \(\mathcal{H}^\kappa_s(f) = f \), where the vector field \(\mathcal{H}^\kappa_s(f) \) is defined by:

\[\mathcal{H}^\kappa_s(f) : x \mapsto e^{-\kappa s} (d_s \Phi^s)^{-1} f(\Phi^s(x)). \]

(2.4)
2.2.4 Homogeneous Differential Inclusions

In this subsection, we recall some definitions and results obtained in [4] that we will need in the sequel.

Definition 2.6 [4] Let \(v \) be an Euler vector field. A set-valued map \(F : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is \(v \)-homogeneous of degree \(\kappa \in \mathbb{R} \) if for all \(s \in \mathbb{R} \) we have:

\[
\mathcal{H}_k^s(F) = F,
\]

where we extend the operator \(\mathcal{H}_k^s \) defined in (2.4) by:

\[
\mathcal{H}_k^s(F) : x \mapsto e^{-ks} \left(d_x \Phi^s \right)^{-1} \cdot F(\Phi^s(x)).
\]

Proposition 2.2 Let \(f \in L^\infty(\mathbb{R}^n, \mathbb{R}^n) \) be a vector field. Then for all \(s \in \mathbb{R} \) and all \(\kappa \in \mathbb{R} \) we have:

\[
\mathcal{H}_k^s(\Phi[f]) = \Phi[\mathcal{H}_k^s(f)].
\]

Proof Since for all \(\varepsilon > 0 \) there exist \(\varepsilon_- > 0 \) and \(\varepsilon_+ > 0 \) such that \(\Phi^s(\mathbb{B}(x, \varepsilon_-)) \subset \mathbb{B}(\Phi^s(x, \varepsilon)) \subset \Phi^s(\mathbb{B}(x, \varepsilon_+)) \) we have

\[
\Phi[f](\Phi^s(x)) = \bigcap_{\varepsilon > 0} \bigcap_{N \in N} \text{conv}(f(y), y \in \mathbb{B}(\Phi^s(x, \varepsilon)) \setminus N)
\]

\[
= \bigcap_{\varepsilon > 0} \bigcap_{N \in N} \text{conv}(f(y), y \in \Phi^s(\mathbb{B}(x, \varepsilon)) \setminus N)
\]

\[
= \bigcap_{\varepsilon > 0} \bigcap_{N \in N} \text{conv}(f(\Phi^s(z)), z \in \mathbb{B}(x, \varepsilon) \setminus N)
\]

Hence we find that

\[
\mathcal{H}_k^s(\Phi[f])(x) = \bigcap_{\varepsilon > 0} \bigcap_{N \in N} \text{conv}((d_x \Phi^s)^{-1} d_x \Phi^s \mathcal{H}_k^s(f)(z), z \in \mathbb{B}(x, \varepsilon) \setminus N).
\]

Let us denote by \(\sigma_{\text{max}}((d_x \Phi^s)^{-1} d_x \Phi^s) \) the biggest singular value of the linear mapping \((d_x \Phi^s)^{-1} d_x \Phi^s \). The function \(\phi : z \mapsto |\sigma_{\text{max}}((d_x \Phi^s)^{-1} d_x \Phi^s) - 1| \) is continuous and therefore bounded on \(\mathbb{B}(x, \varepsilon) \) and moreover vanishes at \(z = x \). For all \(z \in \mathbb{B}(x, \varepsilon) \) we have:

\[
\|(d_x \Phi^s)^{-1} d_x \Phi^s \mathcal{H}_k^s(f)(z) - \mathcal{H}_k^s(f)(z)\| \leq M(\varepsilon),
\]

where

\[
M(\varepsilon) = \sup_{\mathbb{B}(x, \varepsilon)} \phi \text{ ess sup} \|\mathcal{H}_k^s(f)\|.
\]
The function M is continuous at zero and $M(0) = 0$. We have proved that

$$ (d_x \Phi^t)^{-1} d_z \Phi^s H^s_k(f)(z) \in H^s_k(f)(z) + B(0, M(\varepsilon)). $$

It follows that

$$ H^s_k(\mathcal{F}[f])(x) = \bigcap_{\varepsilon > 0} \bigcap_{N \in \mathcal{N}} \text{conv}((d_x \Phi^t)^{-1} d_z \Phi^s H^s_k(f)(z), z \in B(x, \varepsilon) \setminus N) $$

$$ \subset \bigcap_{\varepsilon > 0} \bigcap_{N \in \mathcal{N}} \text{conv}(H^s_k(f)(z) + B(0, M(\varepsilon)), z \in B(x, \varepsilon) \setminus N) $$

$$ = \bigcap_{\varepsilon > 0} \left(\left(\bigcap_{N \in \mathcal{N}} \text{conv}(H^s_k(f)(z), z \in B(x, \varepsilon) \setminus N) \right) + B(0, M(\varepsilon)) \right) $$

$$ = \bigcap_{\varepsilon > 0} \bigcap_{N \in \mathcal{N}} \text{conv}(H^s_k(f)(z), z \in B(x, \varepsilon) \setminus N) $$

$$ = \mathcal{F}[H^s_k(f)](x). $$

The proof of the converse inclusion is similar. \qed

Corollary 2.1 Let $f \in \mathcal{L}_\text{loc}^\infty(\mathbb{R}^n, \mathbb{R}^n)$ be a vector field. Suppose f is ν-homogeneous of degree κ. Then $\mathcal{F}[f]$ is ν-homogeneous of degree κ.

Proof Since f is ν-homogeneous of degree κ, we have $H^s_k(f) = f$. Hence $\mathcal{F}[f] = \mathcal{F}[H^s_k(f)] = H^s_k(\mathcal{F}[f])$ by Proposition 2.2 and therefore $\mathcal{F}[f]$ is ν-homogeneous of degree κ. \qed

The following theorem asserts that a strongly globally asymptotically stable homogeneous differential inclusion admits a homogeneous Lyapunov function. This result is a generalization of the theorem proved for ODE in [20].

Theorem 2.1 [4] Let F be a ν-homogeneous set-valued map of degree κ, satisfying the SA. Then the following statements are equivalent:

- The origin is (strongly) GAS for the system $\dot{x} \in F(x)$.
- For all $\mu > \max(-\kappa, 0)$, there exists a pair (V, W) of continuous functions, such that:
 1. $V \in C^\infty(\mathbb{R}^n, \mathbb{R})$, V is positive definite and ν-homogeneous of degree μ;
 2. $W \in C^\infty(\mathbb{R}^n \setminus \{0\}, \mathbb{R})$, $W(x) > 0$ for all $x \neq 0$ and W is ν-homogeneous of degree $\mu + \kappa$;
 3. $\max_{v \in F(x)} d_x V v \leq -W(x)$ for all $x \neq 0$.
2.3 Homogenization of a Differential Inclusion

The following definition extends the notion of homogenization to DI.

Definition 2.7 Let F be a set-valued map and ν be an Euler vector field.

- The set-valued map $H : \mathbb{R}^n \to \mathcal{F}(\mathbb{R}^n)$ is the ν-homogenization of F at the origin if $H \neq \{0\}$ and if there exists $\kappa \in \mathbb{R}$ such that:

$$\mathcal{H}_\kappa^\nu(F)(x) \xrightarrow{CUC} H(x) \quad \forall x \in \mathbb{R}^n. \quad (2.5)$$

- The set-valued map $H : \mathbb{R}^n \to \mathcal{F}(\mathbb{R}^n)$ is the ν-homogenization of F at infinity if $H \neq \{0\}$ and there exists $\kappa \in \mathbb{R}$ such that:

$$\mathcal{H}_\kappa^\nu(F)(x) \xrightarrow{CUC} H(x) \quad \forall x \in \mathbb{R}^n. \quad (2.6)$$

Proposition 2.3 Let F be a set-valued map, ν be an Euler vector field and H be the ν-homogenization of F at the origin (resp. at infinity). The following properties hold:

1. H is unique;
2. H is ν-homogeneous;
3. If the standard assumptions hold for F, they hold for H.

Proof We will only give the proofs in the case of homogenization at the origin, the case of homogenization at infinity being similar.

By uniqueness of the limit, for a given $\kappa \in \mathbb{R}$, the possible limit of $\mathcal{H}_\mu^\nu(F)$ is unique. Assume now that there exists a degree $\mu \neq \kappa$ such that $\mathcal{H}_\mu^\nu(F)$ converges to H. We will consider two cases.

If $\mu > \kappa$, we have:

$$\partial(\mathcal{H}_\mu^\nu(F)(x), \{0\}) = e^{(\kappa-\mu)s}\partial(\mathcal{H}_\kappa^\nu(F)(x), \{0\})$$

$$\leq e^{(\kappa-\mu)s}[\partial(\mathcal{H}_\kappa^\nu(F)(x), H(x))$$

$$+\partial(H(x), \{0\})].$$

and therefore for all compact set $X \subset \mathbb{R}^n$:

$$\sup_{x \in X} \partial(\mathcal{H}_\mu^\nu(F)(x), \{0\}) \leq e^{(\kappa-\mu)s}[\sup_{x \in X} \partial(\mathcal{H}_\kappa^\nu(F)(x), H(x))$$

$$+\sup_{x \in X} \partial(H(x), \{0\})].$$

Since $\sup_{x \in X} \partial(H(x), \{0\})$ is finite and $\sup_{x \in X} \partial(\mathcal{H}_\mu^\nu(F)(x), H(x))$ tends to zero when $s \to -\infty$, we conclude that $\sup_{x \in X} \partial(\mathcal{H}_\mu^\nu(F)(x), \{0\}) \to 0$, that is $H = \{0\}$, which is a contradiction.
If \(\kappa > \mu \), consider \(z \in \mathbb{R}^n \) such that \(H(z) \neq \{0\} \). The application \(X \in \mathcal{S}(\mathbb{R}^n) \mapsto \sup_{x \in X} \|x\| \) is continuous, hence \(\sup_{v \in \mathcal{H}_s^\mu(F)(z)} \|v\| \to \alpha > 0 \) when \(s \to -\infty \) and therefore \(\sup_{v \in \mathcal{H}_s^\mu(F)(z)} \|v\| = e^{(\mu-\kappa)s} \sup_{v \in \mathcal{H}_s^\kappa(F)(z)} \|v\| \to +\infty \) when \(s \to -\infty \), but \(\sup_{v \in \mathcal{H}_s^\mu(F)(z)} \|v\| \) converges to \(\sup_{v \in \tilde{H}(z)} \|v\| \) as well and thus \(\tilde{H}(z) \) is not bounded, which is a contradiction. This proves the first point.

The homogeneity of \(H \) is a consequence of the following computation:

\[
H(\Phi^\sigma(x)) = \lim_{s \to -\infty} \mathcal{H}_s^\kappa(F)(\Phi^\sigma(x))
\]

\[
= \lim_{s \to -\infty} e^{-\kappa s} (d_{\Phi^\sigma(x)} \Phi^s)^{-1} \cdot F(\Phi^{s+\sigma(x)})
\]

\[
= \lim_{s \to -\infty} e^{\kappa \sigma} d_x \Phi^\sigma e^{-\kappa (s+\sigma)} (d_x \Phi^{s+\sigma})^{-1} \cdot F(\Phi^{s+\sigma(x)}(x))
\]

\[
= \lim_{u \to -\infty} e^{\kappa \sigma} d_x \Phi^\sigma e^{-\kappa u} (d_x \Phi^u)^{-1} \cdot F(\Phi^u(x))
\]

\[
= e^{\kappa \sigma} d_x \Phi^\sigma \cdot \lim_{u \to -\infty} \mathcal{H}_u^\mu(F)(x)
\]

\[
= e^{\kappa \sigma} d_x \Phi^\sigma \cdot H(x)
\]

Finally, \(H(x) \) is a nonempty compact set by construction. It is well known that the convexity is preserved at the limit by the Hausdorff distance (see for instance [27]), so \(H(x) \) is convex. Only the USC remains to prove.

Consider \(\mathcal{U} \) an open neighborhood of \(H(x) \). We can assume that \(\mathcal{U} \) is bounded; if not, we replace it by \(\mathcal{U} \cap \mathbb{B}(r) \) for \(r > 0 \) such that \(H(x) \subset \mathbb{B}(r) \). Denote

\[
\alpha = \inf \{d(h, v), h \in H(x), v \in \partial \mathcal{U} \} > 0.
\]

We have

\[
H(x) + \mathbb{B}(\alpha) \subset \mathcal{U}.
\]

By the uniform convergence, there exists \(s \) such that for all \(y \in \mathbb{B}(x, 1) \), we have

\[
\mathcal{D}(H_s^\kappa(F)(y), H(y)) < \varepsilon/3.
\]

In particular,

\[
H(y) \subset \mathcal{H}_s^\kappa(F)(y) + \mathbb{B}(\varepsilon/3)
\]

and

\[
\mathcal{H}_s^\kappa(F)(x) \subset H(x) + \mathbb{B}(\varepsilon/3).
\]

By USC of \(\mathcal{H}_s^\kappa(F) \), there exists a neighborhood of \(x, \mathcal{U} \subset \mathbb{B}(x, 1) \), such that for all \(y \in \mathcal{U} \),
\[\mathcal{H}_k^\varepsilon(F)(y) \subset \mathcal{H}_k^\varepsilon(F)(x) + \mathbb{B}(\varepsilon/3). \]

Hence, for all \(y \in \mathcal{U} \),
\[H(y) \subset H_k^\varepsilon(F)(y) + \mathbb{B}(\varepsilon/3) \subset H_k^\varepsilon(F)(x) + \mathbb{B}(2\varepsilon/3) \subset H(x) + \mathbb{B}(\varepsilon) \subset \mathcal{V}. \]

The Definition 2.7 allows us to build a local approximation of a given set-valued map. But we can also apply this procedure to a vector field. Denoting \(f \) a locally essentially bounded vector field with a \(\nu \)-homogenization \(h \) of degree \(\kappa \). Then \(\mathcal{F}[f] \) admits a \(\nu \)-homogenization \(H \) of degree \(\kappa \) and moreover \(H = \mathcal{F}[h] \).

Proposition 2.4 Consider a locally essentially bounded vector field \(f \) with a \(\nu \)-homogenization \(h \) of degree \(\kappa \). Then \(\mathcal{F}[f] \) admits a \(\nu \)-homogenization \(H \) of degree \(\kappa \) and moreover \(H = \mathcal{F}[h] \).

Proof Consider a sequence of locally essentially bounded vector fields \((f_k) \) converging to \(f \) uniformly on compact sets. Let us prove that \(\mathcal{F}(f_n) \) converges to \(\mathcal{F}[f] \) uniformly on compact sets.

For every compact set \(Y \), for all \(\varepsilon > 0 \), there exists \(N(Y) > 0 \) such that for all \(k \geq N(Y) \), \(\sup_{y \in Y} \|f_n(y) - f(y)\| \leq \varepsilon \), that is \(f_n(y) \in f(y) + \mathbb{B}(\varepsilon) \) and \(f(y) \in f_n(y) + \mathbb{B}(\varepsilon) \).

Consider a compact set \(X \) and fix \(\varepsilon > 0 \). Denote \(Y = X + \mathbb{B}(1) \). For all \(x \in X \) and all \(\delta < 1 \) we have \(\mathbb{B}(x, \delta) \subset Y \). Thus for \(n \geq N(Y) \):

\[
\mathcal{F}[f_n](x) = \bigcup_{\delta > 0} \bigcap_{N \in \mathcal{N}} \text{conv}(f_n(y), y \in \mathbb{B}(x, \delta) \setminus N) \\
\subset \bigcap_{\delta > 0} \bigcap_{N \in \mathcal{N}} \text{conv}(f(y) + \mathbb{B}(\varepsilon), y \in \mathbb{B}(x, \delta) \setminus N) \\
\subset \bigcap_{\delta > 0} \bigcap_{N \in \mathcal{N}} \text{conv}(f(y), y \in \mathbb{B}(x, \delta) \setminus N) + \mathbb{B}(\varepsilon) \\
\subset \mathcal{F}[f](x) + \mathbb{B}(\varepsilon).
\]

The converse inclusion \(\mathcal{F}[f](x) \subset \mathcal{F}[f_n](x) + \mathbb{B}(\varepsilon) \) is obtained similarly. Finally, for \(n \geq N(Y) \), for all \(x \in X \), \(\delta(\mathcal{F}[f](x), \mathcal{F}[f_n](x)) < \varepsilon \) and we get the uniform convergence.

Now, by Proposition 2.2, for all \(s \in \mathbb{R} \) we have \(\mathcal{H}_k^s(\mathcal{F}[f]) = \mathcal{H}_k^s(\mathcal{F}[h]) \). Since \(\mathcal{H}_k^s(f) \) is converging uniformly on compact sets to \(h \), \(\mathcal{F}[\mathcal{H}_k^s(f)] \) converges to \(\mathcal{F}[h] \) and hence \(\mathcal{H}_k^s(\mathcal{F}[f]) \) converges to \(\mathcal{F}[h] \). Since \(h \) is \(\nu \)-homogeneous of degree \(\kappa \), so is \(\mathcal{F}[h] \) and then by definition \(\mathcal{F}[h] \) is the \(\nu \)-homogenization of \(\mathcal{F}[f] \), that is \(\mathcal{F}[h] = H \). \(\square \)
Theorem 2.2 Let F be a set-valued map for which the standard assumptions hold and H be its homogenization at the origin. If the origin is a GAS equilibrium of H, it is a LAS equilibrium of F. If moreover the degree of H is negative, the origin is a locally finite-time stable equilibrium of F.

Proof Let (V, W) be a ν-homogeneous Lyapunov pair for H, with V of degree $\mu > \max\{0, -\kappa\}$. Let us denote $S = \{V = 1\}$ and fix $x \in S$ and $s \in \mathbb{R}$. For the homogenization of F at the origin H, we have:

$$\forall \varepsilon > 0 \exists g(\varepsilon) \in \mathbb{R}, \forall s \leq g(\varepsilon) \forall x \in S$$

$$d(Hs(\kappa(F(x)), H(x))) < \varepsilon.$$

Hence, denoting $a = \inf_S W$ and $b = \sup_S \|d_x V\|$, for all $s \leq g(\frac{a}{2b})$ and all $v \in F(\Phi^s(x))$, there exists $w \in H(x)$ such that $\|e^{-\kappa s}(d_x \Phi^s)^{-1} - w\| < \frac{a}{2b}$. Therefore, for all $s \leq g(\frac{a}{2b})$ and all $v \in F(\Phi^s(x))$:

$$d_{\Phi^s(x)} Vv = d_{\Phi^s(x)} V(v - e^{\kappa s}d_x \Phi^s w) + d_{\Phi^s(x)} V(e^{\kappa s}d_x \Phi^s w)$$

$$= e^{(\kappa + \mu)s} \left[e^{-\mu s}d_{\Phi^s(x)} V d_x \Phi^s \left(e^{-\kappa s} \left(d_x \Phi^s \right)^{-1} v - w \right) \right]$$

$$+ e^{-\mu s}d_{\Phi^s(x)} V d_x \Phi^s w$$

$$= e^{(\kappa + \mu)s} \left[d_x V \left(e^{-\kappa s} \left(d_x \Phi^s \right)^{-1} v - w \right) + d_x V w \right]$$

$$\leq e^{(\kappa + \mu)s} \left[b\|e^{-\kappa s} \left(d_x \Phi^s \right)^{-1} v - w\| - a \right]$$

$$\leq -\frac{a}{2} e^{(\kappa + \mu)s} = -\frac{a}{2} V(\Phi^s(x))^{\frac{s+\mu}{\mu}}.$$

Thus, for all $y \neq 0$ such that $V(y) \leq e^{sg(\frac{2}{3})}$, we find that for all $v \in F(y)$:

$$d_x Vv \leq -\frac{a}{2} V(y)^{\frac{s+\mu}{\mu}}.$$ \hspace{1cm} (2.7)

The relation (2.7) proves that V is a local Lyapunov function for F, and then the origin is a LAS equilibrium of F. Moreover, if $\kappa < 0$ then $0 < \frac{s+\mu}{\mu} < 1$. Classical techniques then show that the convergence to the origin is performed in a finite time. \hfill \Box

Example 2.1 Consider the following system from [19] (with the particular choice of $\varepsilon = 1/2$):

$$\begin{cases}
\dot{e}_1 = e_2 - k_1 e_1^{[1/2]} - k_2 e_1 \\
\dot{e}_2 = -k_3 \text{sign}[e_1] - k_4 e_1
\end{cases}.$$
Taking $\nu = 2x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2}$, we can compute the ν-homogenization of the system at the origin. A direct computation yields the following ν-homogenization of degree -1:

$$\begin{cases}
\dot{e}_1 = e_2 - k_1 e_1^{1/2} \\
\dot{e}_2 = -k_3 \text{sign}(e_1)
\end{cases}$$

The origin is known to be globally finite-time stable for this system, and we conclude by the Theorem 2.2 that the origin is a locally finite-time stable equilibrium of the initial system.

Corollary 2.2 Let F be a set-valued map for which the standard assumptions hold and H be its homogenization at the origin. If the origin is a GAS equilibrium of both F and H and if the degree of H is negative, then the origin is a globally finite-time stable equilibrium of F.

Proof Theorem 2.2 yields that the origin is a locally finite-time stable equilibrium of F. Given that we also assumed the origin to be asymptotically stable, the origin is therefore globally finite-time stable.

2.4 Robustness of Homogeneous and Homogenizable Systems

In this section we consider a measurable set-valued map $F : \mathbb{R}^n \times \mathbb{R}^m \rightrightarrows \mathbb{R}^n$. We denote $F(\Delta) = F(\cdot, \Delta)$. We will be interested in proving robustness properties of the system defined by:

$$\dot{x} \in F(x, \Delta), \quad x \in \mathbb{R}^n, \quad \Delta \in \mathcal{L}_\text{loc}^{\infty}(\mathbb{R}, \mathbb{R}^m). \quad (2.8)$$

2.4.1 ISS Definitions and Properties

In this chapter, we will be interested in the following stability properties [23, 25].

Definition 2.8 The system (2.8) is called input-to-state practically stable (ISpS), if for any input $\Delta \in \mathcal{L}_\text{loc}^{\infty}(\mathbb{R}, \mathbb{R}^m)$ and any $x_0 \in \mathbb{R}^n$ there are some functions $\beta \in \mathcal{KL}$, $\gamma \in \mathcal{KL}$ and $c \geq 0$ such that for any solution x of (2.8):

$$\|x(t)\| \leq \beta(\|x_0\|, t) + \gamma(\sup_{\tau \in [0, t]} \|\Delta(\tau)\|) + c \quad \forall t \geq 0.$$

The function γ is called nonlinear asymptotic gain. The system is called ISS if $c = 0$.

These properties have the following Lyapunov function characterizations.
Definition 2.9 A smooth function $V : \mathbb{R}^n \rightarrow \mathbb{R}_+$ is called ISpS Lyapunov function for the system (2.8) if for all $x \in \mathbb{R}^n$, $\Delta \in \mathbb{R}^m$ and some $r \geq 0$, $\alpha_1, \alpha_2, \alpha_3 \in \mathcal{K}_\infty$ and $\theta \in \mathcal{K}$:

$$
\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|),
$$

$$
\sup_{v \in F(x, \Delta)} d_x V v \leq r + \theta(\|\Delta\|) - \alpha_3(\|x\|).
$$

Such a function V is called ISS Lyapunov function if $r = 0$.

Note that an ISpS Lyapunov function can also satisfy the following equivalent condition for some $\alpha_4 \in \mathcal{K}_\infty$, $\chi \in \mathcal{K}$ and $\rho \geq 0$:

$$
\|x\| > \chi(\|\Delta\|) + \rho \Rightarrow \sup_{v \in F(x, \Delta)} d_x V v \leq -\alpha_4(\|x\|).
$$

Proposition 2.5 If there exists an ISpS (resp. ISS) Lyapunov function for the system (2.8), then the system is ISpS (resp. ISS).

2.4.2 ISS of Homogeneous Differential Inclusions

In the following results, we will need some assumptions on F.

Assumption 2.1 For all $\Delta \in \mathbb{R}^m$ the set-valued map F_Δ verifies the SA.

This assumption ensures that solutions of the system (2.8) exist.

Assumption 2.2 There exists a ν-homogeneous set-valued map H of degree κ verifying the SA such that

A. the origin is a GAS equilibrium of H. We denote (V, W) a ν-homogeneous Lyapunov pair for H given by Theorem 2.1.

B. for all $\varepsilon > 0$ and for all $D \geq 0$ there exists $\eta > 0$ such that for all $s \geq \eta$, for all $x \in \mathbb{S} = \{ V = 1 \}$ and for all $\|\Delta\| \leq D$, we have $\mathcal{H}^\varsigma_\kappa(F_\Delta)(x) \subset H(x) + \mathbb{B}(\varepsilon)$.

Following the notations used in Sect. 2.3, we denote

$$
a = \inf_{\mathbb{S}} W \quad \text{and} \quad b = \sup_{\mathbb{S}} \|d_x V\|.
$$

We also denote

$$
h(D) = \inf \left\{ \eta \in \mathbb{R} : \forall s \geq \eta \forall \|\Delta\| \leq D, \mathcal{H}^\varsigma_\kappa(F_\Delta)(x) \subset H(x) + \mathbb{B}\left(\frac{a}{2b}\right) \right\}.
$$

By Assumption 2.2 B, $h(D) < +\infty$. We allow $h(D) = -\infty$, denote $\ell = \lim_{D \rightarrow 0^+} h(D)$.
Theorem 2.3 Under Assumptions 2.1 and 2.2, the system (2.8) is:

\text{ISS} \text{ if } \ell = -\infty, \\
\text{ISpS} \text{ if } \ell \neq -\infty.

Remark 2.1 The following hint for a selection of H can be proposed. When F_0 is ν-homogeneous of degree μ, Assumption 2.2B gives, for $x \in S$:

$$\lim_{s \to +\infty} e^{(\mu - \kappa)s} F_0(x) \subset H(x).$$

If $\mu > \kappa$, $e^{(\mu - \kappa)s} F_0(x)$ diverges when $s \to +\infty$, and if $\mu < \kappa$, we get that $0 \in H(x)$, which is a contradiction to the global asymptotic stability of H (Assumption 2.2A). Thus $\mu = \kappa$ and $F_0 \subset H$. Similarly, if F_0 admits a ν-homogeneization H_0 of degree μ, we find that $\mu = \kappa$ and $H_0 \subset H$. This remark gives us a candidate for H in some situations and it will be used in Theorem 2.4.

To prove the Theorem 2.3, we need some technical lemmas.

Lemma 2.1 Let $\sigma : \mathbb{R}_+ \to \mathbb{R}$ be an increasing function such that $\lim_{x \to 0^+} \sigma(x) = 0$. Then there exists a class \mathcal{K} function $\bar{\sigma}$ such that for all $x \in \mathbb{R}_+$, $\sigma(x) \leq \bar{\sigma}(x)$.

Proof Let us first remark that $\sigma(x) \geq 0$ for all $x > 0$.

- For all $n \in \mathbb{N}^*$ and all $x \in [n, n + 1]$, let us define:

$$\bar{\sigma}(x) = (\sigma(n + 2) - \sigma(n + 1) + 1)(x - n) + \sigma(n + 1) + n.$$

We find $\bar{\sigma}(n) = \sigma(n + 1) + n$ and

$$\lim_{x \to n+1; x < n+1} \bar{\sigma}(x) = \sigma(n + 2) + n + 1 = \bar{\sigma}(n + 1).$$

Hence $\bar{\sigma}$ is continuous on $[1, +\infty[$ and clearly strictly increasing. Moreover, for all $n \in \mathbb{N}^*$ and all $x \in [n, n + 1]$:

$$\bar{\sigma}(x) \geq \bar{\sigma}(n) = \sigma(n + 1) + n > \sigma(n + 1) \geq \sigma(x).$$

- For all $x \in [\frac{1}{2}, 1]$, we set $\bar{\sigma}(x) = (2x - 1)(\sigma(2) - \sigma(1) + \frac{1}{2}) + \sigma(1) + \frac{1}{2}$. We easily check that $\bar{\sigma}(x) \to \bar{\sigma}(1)$ when $x \to 1, x < 1$, and we find $\bar{\sigma}(\frac{1}{2}) = \sigma(1) + \frac{1}{2}$. This construction proves that $\bar{\sigma}$ is continuous and strictly increasing on $[\frac{1}{2}, +\infty[$.

For $x \in [\frac{1}{2}, 1]$, we have $\bar{\sigma}(x) \geq \bar{\sigma}(\frac{1}{2}) = \sigma(1) + \frac{1}{2} > \sigma(x)$.

- For all $n \in \mathbb{N}, n \geq 2$, and all $x \in \left[\frac{1}{n+1}, \frac{1}{n}\right]$ we set:

$$\bar{\sigma}(x) = n(n + 1) \left(x - \frac{1}{n+1}\right).$$
\[
x \left[\sigma \left(\frac{1}{n+1} \right) - \sigma \left(\frac{1}{n} \right) + \frac{1}{n(n+1)} \right] \\
+ \sigma \left(\frac{1}{n} \right) + \frac{1}{n+1}.
\]

We find \(\bar{\sigma} \left(\frac{1}{n+1} \right) = \sigma \left(\frac{1}{n+1} \right) + \frac{1}{n+1} \) and \(\bar{\sigma}(x) \to \sigma \left(\frac{1}{n+1} \right) + \frac{1}{n} \) when \(x \to \frac{1}{n}, x < \frac{1}{n} \).
Thus \(\bar{\sigma} \) is continuous and strictly increasing on \([0, +\infty[\). For \(x \in \left[\frac{1}{n+1}, \frac{1}{n} \right], \) we have \(\bar{\sigma}(x) \geq \bar{\sigma} \left(\frac{1}{n+1} \right) = \sigma \left(\frac{1}{n+1} \right) + \frac{1}{n+1} > \sigma \left(\frac{1}{n} \right) \geq \sigma(x) \).

- The function \(\bar{\sigma} \) being increasing on \([0, +\infty[\), the limit of \(\bar{\sigma} \) at 0 is the limit of \(\bar{\sigma} \left(\frac{1}{n+1} \right) \) when \(n \to +\infty \). But \(\bar{\sigma} \left(\frac{1}{n+1} \right) = \sigma \left(\frac{1}{n} \right) + \frac{1}{n+1} \) converges to zero when \(n \to +\infty \).

Finally setting \(\bar{\sigma}(0) = 0 \) proves that \(\bar{\sigma} \) is a class \(\mathcal{H} \) function such that \(\bar{\sigma}(x) \geq \sigma(x) \) for all \(x \geq 0 \). \(\square \)

Lemma 2.2 Let \(V : \mathbb{R}^n \to \mathbb{R} \) be a continuous positive definite \(\nu \)-homogeneous function of degree \(\kappa > 0 \). There exist \(\sigma_- \) and \(\sigma_+ \) two functions of class \(\mathcal{H} \) such that for all \(x \in \mathbb{R}^n \):

\[
\sigma_- (\|x\|) \leq V(x) \leq \sigma_+ (\|x\|).
\]

Proof Denote \(\sigma_+(r) = \sup_{\|y\| \leq r} V(y) \). The function \(\sigma_+ \) is clearly continuous, increasing and verifies \(\sigma_+(0) = 0 \). Let us show that \(\sigma_+ \) is strictly increasing. It is enough to prove that for any \(x_0 \) such that \(\|x_0\| \leq r \) and \(V(x_0) = \sigma_+(r) \) verifies \(\|x_0\| = r \). Assume by contradiction that \(\|x_0\| < r \). By continuity of the flow \(\Phi \), there exists \(\varepsilon > 0 \) such that for all \(s \in [0, \varepsilon[\), we have \(\|\Phi^s(x_0)\| < r \) and thus \(V(\Phi^s(x_0)) \leq \sigma_+(r) = V(x_0) \). But \(V(\Phi^s(x_0)) = e^{\kappa s} V(x_0) > V(x_0) \) for \(s > 0 \), which is a contradiction.

The function \(\sigma_- \) is defined by \(\sigma_-^{-1}(r) = \sup_{V(x) \leq r} \|x\| \). We similarly prove that \(\sigma_-^{-1} \in \mathcal{H} \).

Finally,

\[
V(x) \leq \sup_{\|y\| \leq \|x\|} V(y) = \sigma_+(\|x\|)
\]

and

\[
\|x\| \leq \sup_{V(y) \leq V(x)} \|y\| = \sigma_-^{-1}(V(x)),
\]

that is \(V(x) \geq \sigma_-(\|x\|) \). \(\square \)

We can now prove Theorem 2.3.

Proof (of Theorem 2.3) Let \(x \in \mathcal{S}, s \in \mathbb{R} \) and \(v \in F_\Delta(\Phi^s(x)) \) be fixed. We have \(e^{-\kappa s} (d_s \Phi^{-1}) v \in \mathcal{H}_\kappa^s(F_\Delta)(x) \), thus for \(s \geq h(\|\Delta\|) \) and by Assumption 2.2 there exists \(w \in H(x) \) such that:
\[\| e^{-\kappa s} (d_x \Phi^s)^{-1} v - w \| < \frac{a}{2b}. \]

Hence for \(s \geq h(\| \Delta \|) \):
\[
d_{\Phi^s} V v = e^{(k+\mu)s} d_x V e^{-\kappa s} (d_x \Phi^s)^{-1} v \\
= e^{(k+\mu)s} [d_x V w + d_x V (e^{-\kappa s} (d_x \Phi^s)^{-1} v - w)] \\
\leq e^{(k+\mu)s} [-a + b\| e^{-\kappa s} (d_x \Phi^s)^{-1} v - w\|] \\
\leq -\frac{a}{2} e^{(k+\mu)s} = -\frac{a}{2} V (\Phi^s(x))^{\frac{\mu + k}{2}}. \\
\]

Finally, for all \(y \in \mathbb{R}^n \) such that \(V(y) \geq e^{\mu h(\| \Delta \|)} \) we have:
\[
\sup_{v \in F_\ell(y)} d_y V v \leq -\frac{a}{2} V(y)^{\frac{\mu + k}{2}}. \tag{2.9}\]

Let us define \(\sigma = e^{\mu \ell} \) if \(\ell \neq -\infty \), and \(\sigma = 0 \) else, and then \(\sigma(D) = e^{\mu h(D)} - \sigma \).

Since \(h \) is clearly increasing and \(\mu > 0 \), \(\sigma \) is increasing and positive. Moreover \(\lim_{D \to 0^+} \sigma(D) = 0 \). By Lemma 2.1, there exists \(\bar{\sigma} \in \mathcal{K} \) such that \(\bar{\sigma}(D) \geq \sigma(D) \).

Therefore, for all \(y \in \mathbb{R}^n \) such that \(V(y) \geq \bar{\sigma}(\| \Delta \|) + \sigma \), in equation (2.9) holds.

Denoting now \(\gamma(s) = \sigma^{-1}(\bar{\sigma}(s) + \sigma) - \sigma^{-1}(\sigma) \), where \(\sigma^{-1} \) is the class \(\mathcal{K} \) function given by Lemma 2.2, we have that if \(\| y \| \geq \gamma(\| \Delta \|) + \sigma^{-1}(\sigma) \) then inequality (2.9) holds. We conclude by standard arguments on ISS/ISpS Lyapunov functions.

Inequality (2.9) gives one straightforward Corollary.

Corollary 2.3 Under Assumptions 2.1 and 2.2, if \(\kappa > 0 \), then the system (2.8) is ISS. If moreover we denote \(\gamma \) the asymptotic gain, then any trajectory of the system converges to the ball of radius \(\gamma(\sup_{t \geq 0} \| \Delta(t) \|) \) in a uniform finite-time.

The following Corollary of Theorem 2.3 shows how to use it when dealing with more concrete systems.

Corollary 2.4 Consider the system \(\dot{x} \in F_0(x) + \mathbb{B}(\| \Delta \|) \). Assume that:

1. \(F_0 \) verifies the SA;
2. the origin is a GAS equilibrium of \(F_0 \);
3. there exists a linear Euler vector field \(v(x) = Ax \) such that \(F_0 \) is \(v \)-homogeneous of degree \(\kappa \);
4. if \(\rho \) denotes the smallest real part of the eigenvalues of \(A \), \(\kappa + \rho > 0 \).

Then the system \(\dot{x} \in F_0(x) + \mathbb{B}(\| \Delta \|) \) is ISS.

Proof Assumption 1 and 2A are clearly verified, taking \(H = F_0 \). Noting that \(\mathcal{H}_v^\kappa(F_\Delta)(x) = F_0(x) + \exp((-\kappa I - A)s) \cdot \mathbb{B}(\| \Delta \|) \), we see that Assumption 2B holds because the matrix \(-\kappa I - A \) is Hurwitz (\(\rho + \kappa > 0 \)). Finally, \(\lim_{D \to 0^+} h(D) = -\infty \) follows from classical matrices considerations.
Theorem 2.4 Consider a set-valued map \(F : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \) verifying Assumption 2.1. Assume moreover that the following hypothesis hold:
1. The origin is a GAS equilibrium of \(F_0 \). We denote \((V, W)\) a \(\nu \)-homogeneous Lyapunov pair for \(F_0 \) given by Theorem 2.1.
2. There exists an Euler vector field \(\tilde{\nu} \) on \(\mathbb{R}^m \), which flow is denoted \(\tilde{\Phi} \), such that:

\[
F(\Phi_s(x), \tilde{\Phi}_s(\Delta)) = e^{\kappa s} d_x \Phi_s F(x, \Delta).
\]

3. There exists a function \(\sigma \in \mathcal{K} \) such that for all \(x \in S = \{V = 1\} \) we have

\[
F_\Delta(x) \subset F_0(x) + B(\sigma(\|\Delta\|)).
\]

Then the system (2.8) is ISS.

Proof Let us show first that Assumption 2.2 holds for \(H = F_0 \). The point Assumption 2.2A is given by the point 1 of the hypothesis of this theorem. By the point 2 of the hypothesis, \(\mathcal{H}_x^s(F_\Delta)(x) = F_{\tilde{\phi}^{-s}(\Delta)}(x) \). Consider \(N \) a continuous positive definite \(\tilde{\nu} \)-homogeneous function of degree 1 on \(\mathbb{R}^m \) and denote \(\eta(\varepsilon, D) = \ln \left(\frac{\sigma_+(D)}{\sigma_-(\sigma^{-1}(\varepsilon))} \right) \), where the functions \(\sigma_- \) and \(\sigma_+ \) are given by Lemma 2.2 with respect to the function \(N \). Consider \(s \geq \eta(\varepsilon, D) \). Then

\[
e^{-s} \sigma_+(D) \leq \sigma_-(\sigma^{-1}(\varepsilon)) \leq e^{-s} N(\Delta) \leq \sigma^{-1}(e^{-s} \sigma_+(\|\Delta\|)) \leq e^{-s} \sigma_+(\|\Delta\|).
\]

Hence for all \(s \geq \eta(\varepsilon, D) \), for all \(x \in S \) and all \(\|\Delta\| \leq D \) we have

\[
\mathcal{H}_x^s(F_\Delta)(x) = F_{\tilde{\phi}^{-s}(\Delta)}(x) \subset F_0(x) + B(\varepsilon)
\]

by hypothesis 3. Therefore Assumption 2.2 holds for \(H = F_0 \). Since \(h(D) \leq \eta(D, D) \) and \(\lim_{D \to 0^+} \eta(D, D) = -\infty \), we conclude by Theorem 2.3.

Example 2.2 Consider the following disturbed system:

\[
\begin{align*}
\dot{x}_1 &= x_2 + \Delta \\
\dot{x}_2 &= -k_1 \text{sign}[x_1] - k_2 \text{sign}[x_2]
\end{align*}
\]

where \(k_1 > k_2 > 0 \) are fixed gains. When \(d = 0 \), it is well-known that the system is \(\nu \)-homogeneous of degree \(\kappa = -1 \) with \(\nu = 2x_1 \frac{\partial}{\partial x_1} + x_2 \frac{\partial}{\partial x_2} \) and GAS, that is hypothesis 1 holds. Taking \(\tilde{\nu} = \Delta \frac{\partial}{\partial \Delta} \), we see that hypothesis 2 holds. Finally the hypothesis 3 also holds with \(\sigma(D) = D \) and the system is ISS by Theorem 2.4.

Corollary 2.5 Let \(f : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}^n \) be a continuous vector field. Assume that there exists an Euler vector field \(\tilde{\nu} \) on \(\mathbb{R}^m \), which flow is denoted \(\tilde{\Phi} \), such that:

\[
f(\Phi_s(x), \tilde{\Phi}_s(\Delta)) = e^{\kappa s} d_x \Phi_s f(x, \Delta).
\]
and assume moreover that the origin is a GAS equilibrium of f_0, where $f_0(x) = f(x, 0)$. Then the system $\dot{x} = f(x, \Delta)$ is ISS.

Proof We take $F_\Delta(x) = \{f_\Delta(x)\}$. The hypothesis 1 and 2 of Theorem 2.4 are clearly satisfied. The continuity of f and the compactness of S give that the function $\sigma(\Delta) = \sup_{x \in S, ||\Delta|| \leq D} ||f_\Delta(x) - f_0(x)||$ belongs to class \mathcal{K}, which gives in turn hypothesis 3 and concludes the proof.

2.5 Conclusion

In this chapter, we achieved two objectives. First, we introduced homogenization for DI. We proved that this notion is consistent with the Filippov’s procedure and that the local stability is inherited by a system which has a GAS homogenization. Second, we applied homogeneity and homogenization techniques to prove ISS and ISpS properties of systems defined by DI. All these results were presented using geometric homogeneity.

In the future, we plan to use these results and techniques for designing SMC and getting a good understanding of the associated robustness properties of such systems. In particular, controlling the asymptotic gain could give a way of reducing the chattering effect.

Acknowledgements This chapter is supported by ANR Finite4SoS (ANR 15 CE23 0007).

References

Advances in Variable Structure Systems and Sliding Mode Control—Theory and Applications
Li, S.; Yu, X.; Fridman, L.; Man, Z.; Wang, X. (Eds.)
2018, XVI, 409 p. 119 illus., 68 illus. in color., Hardcover
ISBN: 978-3-319-62895-0