Contents

1 Introduction Ill-Posedness of Inverse Problems for Differential and Integral Equations .. 1
 1.1 Some Basic Definitions and Examples 1
 1.2 Continuity with Respect to Coefficients and Source:
 Sturm-Liouville Equation 9
 1.3 Why a Fredholm Integral Equation of the First Kind
 Is an Ill-Posed Problem? 13

Part I Introduction to Inverse Problems

2 Functional Analysis Background of Ill-Posed Problems 23
 2.1 Best Approximation and Orthogonal Projection 24
 2.2 Range and Null-Space of Adjoint Operators 31
 2.3 Moore-Penrose Generalized Inverse 33
 2.4 Singular Value Decomposition 38
 2.5 Regularization Strategy. Tikhonov Regularization 45
 2.6 Morozov’s Discrepancy Principle 58

3 Inverse Source Problems with Final Overdetermination 63
 3.1 Inverse Source Problem for Heat Equation 64
 3.1.1 Compactness of Input-Output Operator and Fréchet
 Gradient .. 67
 3.1.2 Singular Value Decomposition of Input-Output Operator 72
 3.1.3 Picard Criterion and Regularity of Input/Output Data ... 79
 3.1.4 The Regularization Strategy by SVD. Truncated SVD ... 84
 3.2 Inverse Source Problems for Wave Equation 90
 3.2.1 Non-uniqueness of a Solution 93
 3.3 Backward Parabolic Problem 96
3.4 Computational Issues in Inverse Source Problems 104
 3.4.1 Galerkin FEM for Numerical Solution of Forward Problems 105
 3.4.2 The Conjugate Gradient Algorithm 107
 3.4.3 Convergence of Gradient Algorithms for Functionals with Lipschitz Continuous Fréchet Gradient 112
 3.4.4 Numerical Examples 116

Part II Inverse Problems for Differential Equations

4 Inverse Problems for Hyperbolic Equations 123
 4.1 Inverse Source Problems 123
 4.1.1 Recovering a Time Dependent Function 124
 4.1.2 Recovering a Spacewise Dependent Function 126
 4.2 Problem of Recovering the Potential for the String Equation . 128
 4.2.1 Some Properties of the Direct Problem 129
 4.2.2 Existence of the Local Solution to the Inverse Problem ... 133
 4.2.3 Global Stability and Uniqueness 138
 4.3 Inverse Coefficient Problems for Layered Media 141

5 One-Dimensional Inverse Problems for Electrodynamic Equations ... 145
 5.1 Formulation of Inverse Electrodynamic Problems 145
 5.2 The Direct Problem: Existence and Uniqueness of a Solution ... 146
 5.3 One-Dimensional Inverse Problems 155
 5.3.1 Problem of Finding a Permittivity Coefficient 155
 5.3.2 Problem of Finding a Conductivity Coefficient 160

6 Inverse Problems for Parabolic Equations 163
 6.1 Relationships Between Solutions of Direct Problems for Parabolic and Hyperbolic Equations 163
 6.2 Problem of Recovering the Potential for Heat Equation 166
 6.3 Uniqueness Theorems for Inverse Problems Related to Parabolic Equations 168
 6.4 Relationship Between the Inverse Problem and Inverse Spectral Problems for Sturm-Liouville Operator 171
 6.5 Identification of a Leading Coefficient in Heat Equation: Dirichlet Type Measured Output 174
 6.5.1 Some Properties of the Direct Problem Solution 175
 6.5.2 Compactness and Lipschitz Continuity of the Input-Output Operator. Regularization 177
 6.5.3 Integral Relationship and Gradient Formula 183
 6.5.4 Reconstruction of an Unknown Coefficient 186
6.6 Identification of a Leading Coefficient in Heat Equation:
 Neumann Type Measured Output 191
 6.6.1 Compactness of the Input-Output Operator 193
 6.6.2 Lipschitz Continuity of the Input-Output Operator
 and Solvability of the Inverse Problem 197
 6.6.3 Integral Relationship and Gradient Formula 200

7 Inverse Problems for Elliptic Equations 205
 7.1 The Inverse Scattering Problem at a Fixed Energy 205
 7.2 The Inverse Scattering Problem with Point Sources 208
 7.3 Dirichlet to Neumann Map 213

8 Inverse Problems for the Stationary Transport Equations 219
 8.1 The Transport Equation Without Scattering 219
 8.2 Uniqueness and a Stability Estimate
 in the Tomography Problem 222
 8.3 Inversion Formula 223

9 The Inverse Kinematic Problem 227
 9.1 The Problem Formulation 227
 9.2 Rays and Fronts 228
 9.3 The One-Dimensional Problem 231
 9.4 The Two-Dimensional Problem 234

Appendix A: Invertibility of Linear Operators 239

Appendix B: Some Estimates For One-Dimensional
Parabolic Equation 247

References ... 253

Index .. 259