Contents

Part I Existence and Regularity Results, Quantitative Methods and Their Convergence

1 Qualitative Methods for Classes of Nonlinear Systems: Constructive Existence Results .. 3
 1.1 First Order Differential-Operator Equations and Inclusions 3
 1.1.1 Setting of the Problem 3
 1.1.2 Main Assumptions ... 5
 1.1.3 Special Basis and Approximations for Multi-valued Mappings .. 8
 1.1.4 Results .. 10
 1.2 Second Order Operator Differential Equations and Inclusions 30
 1.3 Evolutional Variational Inequalities: Penalty Method and Strong Solutions 33
 1.4 Nonlinear Parabolic Equations of Divergent Form 42
References.. 43

2 Regularity of Solutions for Nonlinear Systems 47
 2.1 Regularity of All Weak Solutions for a Parabolic Feedback Control Problem .. 47
 2.2 Artificial Control Method for Nonlinear Partial Differential Equations and Inclusions: Regularity of All Weak Solutions 50
 2.3 Regularity of All Weak Solutions for Nonlinear Reaction-Diffusion Systems with Nonlinear Growth 52
 2.3.1 Reaction-Diffusion Equations 52
 2.3.2 Systems of Reaction-Diffusion Equations 55
 2.4 Examples of Applications 60
 2.4.1 A Parabolic Feedback Control Problem 60
 2.4.2 A Model of Conduction of Electrical Impulses in Nerve Axons .. 61
 2.4.3 Climate Energy Balance Model 61
2.4.4 FitzHugh–Nagumo System .. 64
2.4.5 A Model of Combustion in Porous Media 65
References ... 66

3 Advances in the 3D Navier-Stokes Equations 69
3.1 Weak, Leray-Hopf and Strong Solutions 69
3.2 Leray-Hopf Property for a Weak Solution of the 3D
Navier-Stokes System: Method of Artificial Control 72
3.3 The Existence of Strong Solutions and 1-Dimensional
Dynamical Systems ... 74
3.4 Extremal Solutions: Existence and Continuity Results
in Strongest Topologies ... 79
References ... 86

Part II Convergence Results in Strongest Topologies

4 Strongest Convergence Results for Weak Solutions
of Non-autonomous Reaction-Diffusion Equations
with Carathéodory’s Nonlinearity .. 89
4.1 Translation-Compact, Translation-Bounded and Translation
Uniform Integrable Functions ... 89
4.2 Setting of the Problem .. 90
4.3 Preliminary Properties of Weak Solutions 91
4.4 Strongest Convergence Results in $C^{\text{Loc}}(\mathbb{R}_+; H)$ 95
4.5 Strongest Convergence Results for Solutions in the Natural
Extended Phase Space ... 98
4.6 Examples of Applications ... 106
 4.6.1 Non-autonomous Complex Ginzburg–Landau Equation 106
 4.6.2 Non-autonomous Lotka–Volterra System
 with Diffusion .. 107
References ... 108

5 Strongest Convergence Results for Weak Solutions
of Feedback Control Problems .. 111
5.1 Setting of the Problem .. 111
5.2 Regularity of All Weak Solutions and Their Additional
Properties .. 112
5.3 Convergence of Weak Solutions in the Strongest Topologies .. 113
5.4 Examples of Applications .. 116
 5.4.1 A Model of Combustion in Porous Media 116
 5.4.2 A Model of Conduction of Electrical Impulses
 in Nerve Axons ... 117
 5.4.3 Climate Energy Balance Model 118
References ... 122
6 Strongest Convergence Results for Weak Solutions of Differential-Operator Equations and Inclusions 125
 6.1 First Order Differential-Operator Equations and Inclusions 125
 6.1.1 Convergence Results for Autonomous Evolution Equations 125
 6.1.2 Convergence Results for Nonautonomous Evolution Inclusions 133
 6.2 Second Order Operator Differential Equations and Inclusions 139
 6.3 Examples of Applications 150
 6.3.1 Nonlinear Parabolic Equations of Divergent Form 151
 6.3.2 Nonlinear Non-autonomous Problems on Manifolds with and Without Boundary: A Climate Energy Balance Model 152
 6.3.3 A Model of Conduction of Electrical Impulses in Nerve Axons 153
 6.3.4 Viscoelastic Problems with Nonlinear “Reaction-Displacement” Law 154
References .. 157

Part III Uniform Global Behavior of Solutions: Uniform Attractors, Flattening and Entropy

7 Uniform Global Attractors for Non-autonomous Dissipative Dynamical Systems .. 161
 7.1 General Methodology 161
 7.2 Main Constructions and Results 162
 7.3 Proof of Theorem 7.1 165
 7.4 Example of Applications 169
 7.4.1 Autonomous Evolution Problem 170
 7.4.2 Non-autonomous Evolution Problem 170
 7.4.3 Non-autonomous Differential-Operator Inclusion 171
References .. 174

8 Uniform Trajectory Attractors for Non-autonomous Nonlinear Systems ... 179
 8.1 Uniform Trajectory Attractor for Non-autonomous Reaction-Diffusion Equations with Carathéodory’s Nonlinearity 179
 8.2 Structure of Uniform Global Attractor for Non-autonomous Reaction-Diffusion Equations 187
 8.3 Uniform Trajectory Attractors for Nonautonomous Dissipative Dynamical Systems 203
 8.4 Notes on Applications 209
References .. 209
9 Indirect Lyapunov Method for Autonomous Dynamical Systems . . . 211
 9.1 First Order Autonomous Differential-Operator Equations
 and Inclusions. ... 211
 9.2 Second Order Autonomous Operator Differential Equations
 and Inclusions. ... 215
 9.3 Examples of Applications. 219
 9.3.1 A Model of Combustion in Porous Media 220
 9.3.2 A Model of Conduction of Electrical Impulses
 in Nerve Axons. 220
 9.3.3 Viscoelastic Problems with Nonlinear
 “Reaction-Displacement” Law. 221
 References. .. 232
Index .. 239
Qualitative and Quantitative Analysis of Nonlinear Systems
Theory and Applications
Zgurovsky, M.Z.; Kasyanov, P.O.
2018, XXXIII, 240 p. 43 illus., 23 illus. in color., Hardcover
ISBN: 978-3-319-59839-0