Contents

1 Introduction ... 1
 References. ... 4

2 Finite State Machines and Field-Programmable Gate Arrays 7
 2.1 Background of Finite State Machines 7
 2.2 Synthesis of Mealy and Moore FSMs 11
 2.3 Field-Programmable Gate Arrays 16
 2.4 Implementing FSMs with FPGAs 22
 References. ... 32

3 Linear Chains in FSMs. .. 35
 3.1 Counter-Based Control Units 35
 3.2 Basic Principles of Hardware Reduction for Moore FSMs 38
 3.3 Linear Chains of States 47
 3.4 Structures of LCS-Based FSMs 50
 3.5 Principles of Hardware Reduction for LCS-Based Finite State
 Machines .. 61
 References. ... 64

4 Hardware Reduction for Moore UFSMs 67
 4.1 Using Two and Three Sources of Class Codes 67
 4.2 Design of UFSMs with Three Sources 71
 4.3 Design of UFSMs with Two Sources 76
 4.3.1 Synthesis of UFSMs with Transformation
 of Microoperations 81
 4.4 Replacement of Logical Conditions 87
 References. ... 93

5 Hardware Reduction for Mealy UFSMs 95
 5.1 Models with Two State Registers 95
 5.2 Optimization of UFSMs with Two Registers 100
5.3 Principle of Object Code Transformation 106
5.4 Design of Mealy FSM1 with OCT 109
5.5 Design of Mealy FSM2 with OCT 114
References .. 119

6 Hardware Reduction for Moore EFSMs 121
6.1 Optimization of EFSM with the Base Structure 121
6.2 Synthesis of EFSM with Code Sharing 131
6.3 Design of Moore EFSMs with Two Sources of Codes 139
6.4 Design of Moore EFSMs with HFPGAs 145
References .. 153

7 Hardware Reduction for Moore NFSMs 155
7.1 Optimization of NFSMs with the Base Structure 155
7.2 Optimization of NFSMs with Code Sharing 164
7.3 Replacement of Logical Conditions for NLCS-based Moore
 FSMs .. 175
7.4 Design of Moore NFSMs with HFPGAs 182
References .. 186

8 Hardware Reduction for Moore XFSMs 187
8.1 Design of XFSM with Base Structure 187
8.2 Optimization of XFSM with the Base Structure 193
8.3 Encoding of Chain Outputs 199
8.4 Code Sharing for Moore XFSMs 205
8.5 Code Sharing with a Single EMB 211
References .. 220

Conclusion ... 221
Index ... 223
Logic Synthesis for Finite State Machines Based on Linear Chains of States
Foundations, Recent Developments and Challenges
Barkalov, A.; Titarenko, L.; Bieganowski, J.
2018, VIII, 225 p. 145 illus., Hardcover
ISBN: 978-3-319-59836-9