Contents

Part I Time in Fundamental Physics

1 **Introduction: Conceptual Outline of Time**
 1.1 Time-Related Notions
 1.2 Space-Related Notions Make for Useful Comparison
 1.3 Physical Limitations on Intuitive Notions of Time and Space
 1.4 Events
 1.5 Philosophical Worldviews of Time
 1.6 Some Properties Attributed to Time
 1.7 Continuum Mathematics Models for Time
 1.8 Some Basic Properties of Timefunctions
 1.9 Non-continuum Modelling of Time
 1.10 Mathematical Modelling of Space
 1.11 Advent of Notions of Spacetime
 1.12 ‘Measuring Time’: Extra Connotations in the Word ‘Clock’
 1.13 Measuring Length

2 **Time, Space and Laws in Newtonian Mechanics**
 2.1 Newton’s Laws of Mechanics
 2.2 Impact of Newtonian Mechanics
 2.3 Newtonian Absolute Space
 2.4 Newtonian Absolute Time
 2.5 Aristotelian, Galilean and Newtonian Paradigms Compared
 2.6 Newton’s Bucket
 2.7 Newtonian Gravity
 2.8 Electrostatics
 2.9 Gravitation and Electrostatics Compared
 2.10 Magnetostatics
 2.11 Light Flashes
 2.12 Cartesian and Curvilinear Tensors Within the Newtonian Paradigm
 2.13 Principles of Dynamics (PoD) formulations of Mechanics
3 Absolute Versus Relational Motion Debate 33
 3.1 Two Centuries of Critique of the Newtonian Paradigm 33
 3.2 Concrete Example of Relational Particle Mechanics (RPM) 36
 3.3 Ephemeris Time as a Realization of Mach’s Time Principle 36
 3.4 Universality of Relational Thinking 37
 3.5 Electromagnetic Unification and the Luminiferous Aether 37

4 Time, Space, Spacetime and Laws in Special Relativity 41
 4.1 Special Relativity (SR) ... 41
 4.2 Invariant Interval, Indefinite Metric and Proper Time 42
 4.3 Minkowski Spacetime’s Geometrical Structure and Its Physical Meaning .. 44
 4.4 Lorentzian Tensors (Alias 4-Tensors) 47
 4.5 Minkowskian Paradigm of Physics 47
 4.6 More on Time and Spacetime in the Minkowskian Paradigm 48
 4.7 More on SR Clocks .. 50
 4.8 Length Measurement in SR .. 51
 4.9 Einstein’s Eventual Opinion on the Theoretical Status of Clocks and Rods .. 51
 4.10 Exercises I. Time in Mechanics and SR 52

5 Time and Ordinary Quantum Mechanics (QM) 55
 5.1 A Simple Axiomatization of QM 55
 5.2 Experimental Support for QM and Examples 59
 5.3 Time in Nonrelativistic QM ... 60
 5.4 Clocks in QM .. 62
 5.5 Advent of Atomic Clocks ... 63
 5.6 Quantum Inputs to Measuring Lengths and Masses 64

6 Quantum Field Theory (QFT) .. 65
 6.1 Free Spin-0 Field .. 65
 6.2 Free Spin-$\frac{1}{2}$ Field .. 67
 6.3 Free Spin-1 Field: Electromagnetism, and Its Gauge Symmetry 68
 6.4 Time in Quantum SR .. 70
 6.5 Interacting Field Theories, Including Quantum Electrodynamics (QED) .. 71
 6.6 Yang–Mills Theory Underlying the Nuclear Forces 73
 6.7 Discrete Operations (Including Time-Reversal) in Quantum SR 75
 6.8 Quantum-Level Evidence for SR 76
 6.9 Grand Unified Theories ... 76
 6.10 Exercises II. Time and Quantum Theory 76

7 Time and Spacetime in General Relativity (GR) 79
 7.1 More Systematic Formulation of GR’s Mathematics 83
 7.2 Spacetime Action Principle for GR 84
 7.3 Black Holes .. 85
 7.4 Cosmology ... 88
10.2 Closure of $\text{Diff}(\mathcal{M})$... 142
10.3 Further Detail of This Book’s Concepts and Terminology 142
10.4 Spacetime Observables .. 144
10.5 Classical-Level Background Metrics 145
10.6 Paths and Histories Strategies 145
10.7 Web of Classical Problem of Time Strategies 146
10.8 Aspect 6: Foliation Independence 146
10.9 Aspect 7: Spacetime Constructability 147
10.10 Model Arenas, Diffeomorphisms and Slightly Inhomogeneous
 Cosmology .. 149
10.11 Summary so Far: Seven Gates 150
10.12 Frontiers ... 150
11 Quantum Gravity Programs .. 157
 11.1 Basic Considerations .. 157
 11.2 Covariant Approach to Quantum Gravity 160
 11.3 Quantum Field Theory in Curved Spacetime (QFTiCS) 163
 11.4 Canonical Quantum Wave Equations 166
 11.5 Quantum Cosmology ... 167
 11.6 Path Integral Approach for Gravitational Theories 168
 11.7 Covariant Approaches to Alternative Theories 169
 11.8 Perturbative String Theory .. 172
 11.9 Ashtekar Variables and Loop Quantum Gravity 175
 11.10 Canonical Approach to Supergravity 176
 11.11 Brane, Null Line, and Relational Alternatives 177
 11.12 M-Theory .. 178
 11.13 Conclusion: A Family Tree Overview 179
12 Quantum-Level Background Independence and the Problem
 of Time .. 181
 12.1 Quantum Frozen Formalism Problem 181
 12.2 Timefunction-Based Strategies for Frozenness 182
 12.3 Quantum Configurational Relationalism 185
 12.4 Quantum Constraint Closure 185
 12.5 Quantum Assignment of Beables 187
 12.6 Quantum-Level Timeless Approaches 187
 12.7 Quantum Spacetime Relationalism 188
 12.8 Path Integral Approaches ... 189
 12.9 Consistent Histories Approaches 190
 12.10 Web of Quantum Problem of Time Strategies 191
 12.11 Quantum Foliation Independence: Aspect 6) 191
 12.12 Quantum Spacetime Constructability 191
 12.13 Summary of a Local Problem of Time 193
 12.14 Aspect 8: Global Validity .. 194
 12.15 Aspect 9: No Unexplained Multiplicities 194
 12.16 Conclusion. i. Summary Figures 195
12.17 ii. Quantum-Level Frontiers .. 196
12.18 Exercises VI: Quantum Gravity, Background Independence and the Problem of Time .. 197

Part II Classical Problem of Time

13 Advanced Nomenclature for Facet Interference 205
13.1 The Various Primary Ontologies Considered 205
13.2 The Cubert Classification of Quantization and Facets Ordering . 207

14 Configuration Spaces and Their Configurational Relationalism ... 209
14.1 Examples of Configuration Spaces 209
14.2 Configurational Relationalism. i. Principles Discussed 210
14.3 ii. Direct Implementation ... 210
14.4 iii. ‘g,-Act g,-All’ Method: Wider Indirect Implementation . . 211
14.5 On the Variety of Relational Configurations and RPMs 213

15 Temporal Relationalism (TR) ... 217
15.1 General Enough Temporal Relationalism Implementing (TRi) Strategies .. 217
15.2 Equivalence to the Euler–Lagrange Formulation 221
15.3 TRi Form of Conjugate Momentum 221
15.4 Jacobi–Mach Equations of Motion 222
15.5 Differential Hamiltonian .. 222
15.6 Quadratic Constraints from Temporal Relationalism 223
15.7 Mach’s Time Principle and Its Implementations 224
15.8 Discussion of Generalized Local Ephemeris Time (GLET) 226
15.9 Emergent Jacobi Time .. 227

16 Combining Temporal and Configurational Relationalisms 231
16.1 Best Matching: General g .. 231
16.2 TRi-Best Matching .. 233
16.3 Emergent Jacobi–Barbour–Bertotti Time 234
16.4 TRi Configurational Relationalism in General 235
16.5 Example 1) Metric Shape and Scale RPM 235
16.6 Example 2) Metric Shape RPM 236
16.7 RPM Examples of Best Matching Solved 237
16.8 Direct Implementation of Configurational Relationalism for RPMs .. 238
16.9 Limitations of RPM Models 240

17 Temporal Relationalism: More General Geometries 243
17.1 Minisuperspace GR .. 243
17.2 Jacobi–Synge Relational Actions 244

18 Configurational Relationalism: Field Theory and GR’s Thin Sandwich .. 247
18.1 Fields and Finite-Field Portmanteaux 247
18.2 Configurational Relationalism Including Fields 248
18.3 Example 1) Electromagnetism Alone 251
18.4 Example 2) GR ... 251
18.5 Baierlein–Sharp–Wheeler Action and the Thin Sandwich 252
18.6 The Thin Sandwich Problem 253
18.7 Reparametrization-Invariant Relational Action for GR 253
18.8 Geometrical Action for GR 253
18.9 TRi Form of the Thin Sandwich 254
18.10 Comments on GR’s Emergent Machian Time 255
18.11 Example 3) GR with Fundamental Matter Fields 257
18.12 Example 4) Strong Gravity 259

19 Relationalism in Various Further Settings 261
19.1 Multiple Distinct Uses of the Word ‘Relational’ 261
19.2 Well-Known Theoretical Variants in Upper Layers 262
of Mathematical Structure ... 262
19.3 Relationalism and Affine Geometry 262
19.4 Relationalism and Conformal Geometry 263
19.5 Relationalism and the Point at Infinity 264
19.6 The Fermionic Selection Criterion 264
19.7 Relationalism in Ashtekar Variables Formulation of GR 265
19.8 Relationalism and Supersymmetry 267
19.9 Supersymmetric, Conformal and Affine Combinations 269
19.10 String and M-Theory Versus Relationalism 269

20 Other Tempus Ante Quantum Approaches 271
20.1 The Ante Postulate .. 271
20.2 Riem Time’s Hyperbolic Implementation 271
20.3 Scale Factor, Cosmic and Conformal Times 273
20.4 Parabolic and Part-Linear Implementations 274
20.5 Hidden Time Approaches 274
20.6 Implementation by Unhidden Time 275

21 Conformal Approach and Its York Time 277
21.1 Trace-Tracefree Irreducible Tensor Split 277
21.2 Maximal and CMC Slices, and Conformal Scaling 277
21.3 Model Arenas ... 278
21.4 Underlying Conformal Configuration Spaces 279
21.5 Canonical Twist and Definition of York and Euler Times 281
21.6 Dilational Time for Nontrivial \mathbf{g} 283
21.7 Monotonicity of Dilational Times 285

22 Matter Times ... 287
22.1 Straightforward Matter Time 287
22.2 Reference-Fluid Matter Time 287
23 Classical Machian Emergent Time ... 289
23.1 Critique of the Previous Three Chapters’ Notions of Time 289
23.2 Time Transformations in the Relational Approach 290
23.3 Examples of Mass Hierarchies and Heavy–Light (h–l) Splits 291
23.4 Problems with Classical Precursors of Assumptions Commonly Made in Semiclassical Quantum Cosmology 295

24 Brackets, Constraints and Closure .. 297
24.1 General Consideration of Equipping with Brackets 298
24.2 Poisson Brackets and Phase Space 298
24.3 Lessons from the Dirac Algorithm 299
24.4 Some Temporal, Configurational and Closure Facet Interferences 302
24.5 Partitioned Constraint Algebraic Structures 304
24.6 The Remaining Temporal, Configurational and Closure Facet Interferences ... 305
24.7 Seven Strategies for Dealing with Constraint Closure Problems . 306
24.8 Examples of Distinctions Between Types of Constraint 308
24.9 Examples of Constraint Algebraic Structures 310
24.10 Examples of Constraint Closure Problems 313
24.11 The Further Example of Supergravity 315
24.12 Lattice of Constraint Subalgebraic Structures 317

25 Taking Function Spaces Thereover: Beables and Observables . 321
25.1 In the Absence of Facet Interference 321
25.2 The First Great Decoupling of Problem of Time Facets 321
25.3 Sources of Variety Among Classical Notions of Beables 322
25.4 Posing Concrete Mathematical Problems for Beables 323
25.5 Notions of Beables: Examples and Lattice Structure 324
25.6 Strategies for the Problem of Beables 325
25.7 Classical Kuchař Beables: dDEs and Solutions 328
25.8 Examples of Classical Dirac Beables 332
25.9 Examples of Further Notions of Beables 333

26 Fully Timeless Approaches .. 337
26.1 Propositions in the Classical Context 337
26.2 Fully Timeless Approaches ... 339
26.3 Supplanting Questions of Being at a Time 339
26.4 Classical Timeless Structures. i. Good \(\mathcal{G} \) Quantities 340
26.5 ii. Sub- and Super-structures for \(\mathcal{Q} \) 340
26.6 iii. Information, Correlation and Patterns in \(\mathcal{Q} \) 340
26.7 iv. Formalization by Stochastic Mathematics on \(\mathcal{Q} \) 341
26.8 Supplanting Questions of Becoming by a Semblance of Dynamics 343
26.9 Cambium Records .. 346
27 Spacetime Relationalism ... 347
 27.1 Implementation of Spacetime Relationalism 347
 27.2 $\text{Diff}(\mathcal{M})$’s Brackets and Algebraic Structure 348
 27.3 The Space of Spacetimes and of GR Solutions 348
 27.4 The Path (Via) Alternative 349
 27.5 Spacetime Observables 349
 27.6 Use $\text{Diff}(\mathcal{M})$ or Some Larger Group? 350
 27.7 Relationalism as Alternative Route to Physical Theories 351
 27.8 Contrast Between Spacetime and Temporal and Configurational
 Relationalisms .. 352

28 Classical Histories Theory 355
 28.1 \mathcal{G}-Free Case .. 355
 28.2 \mathcal{G}-Nontrivial Classical Histories 357
 28.3 Classical Histories Constraint Closure and Beables 357

29 Classical Machian Combined Approach 359
 29.1 Classical Machian Histories 359
 29.2 Records Within Classical Histories Theory 361
 29.3 Beables in the Combined Approach 363

30 Slightly Inhomogeneous Cosmology (SIC) 365
 30.1 Relational Action for SIC 365
 30.2 Constraints for SIC .. 367
 30.3 Constraint Closure Posed 368
 30.4 Outcome of Dirac Algorithm and Thin Sandwich 370
 30.5 Beables for SIC .. 374
 30.6 The Averaging Problem in GR 376
 30.7 SIC Records .. 376
 30.8 SIC Histories .. 376
 30.9 Summary of the Model Arenas 377
 30.10 Frontiers of Research 377

31 Embeddings, Slices and Foliations 379
 31.1 Single-Slice Concepts. i. Topological and Differentiable
 Manifold Levels ... 379
 31.2 ii. Metric Level .. 380
 31.3 More General Examples 382
 31.4 Spaces of Embeddings and of Slices 382
 31.5 Foliation in Terms of a Decorated Chart 383
 31.6 ADM Kinematics for Foliations 383
 31.7 Spaces of Foliations ... 386
 31.8 Refoliation Invariance 386
 31.9 Bubble Time and Its Dual: Many-Fingered Time 386
 31.10 Issues Involving Specific Foliations 387
 31.11 Various Other Arenas’ (Lack of) Foliation Concepts 388
Contents

32 Applications of Split Spacetime, Foliations and Deformations

- 32.1 Deformation Approach to Geometrodynamics
- 32.2 Universal Kinematics for Hypersurfaces in Spacetime (ADM Split Version)
- 32.3 Thin Sandwich Completion in Terms of Hypersurface Kinematics
- 32.4 Space–Time Split Account of Observables or Beables
- 32.5 Difference Between Hamiltonians and Gauge Generators
- 32.6 ‘Nothing Happens’ Fallacy
- 32.7 Discussion
- 32.8 Foliation Considerations end Unimodular Approach to Problem of Time
- 32.9 Spacetime to Foliations to Internal Time
- 32.10 Covariant-and-Canonical Histories Theory

33 Spacetime Construction and Alternative Emergent Structures

- 33.1 Relational First Principles Ansatz for Geometrodynamical Theories
- 33.2 Geometrodynamical Consistency, Local Relativity and Spacetime Construction
- 33.3 Strongly Vanishing Options: GR, Strong Gravity, Geometrostatics
- 33.4 Family Ansatz for Addition of Minimally-Coupled Matter
- 33.5 The 3 Strong Obstruction Factors as Relativities
- 33.6 The Fourth Weakly-Vanishing Factor
- 33.7 Discover-and-Encode Approach to Physics
- 33.8 Conformogeometrodynamics Assumed
- 33.9 Simpler Cases of Spacetime Constructability
- 33.10 Caveats on Further Matter Results

34 TRi Foliation (TRiFol)

- 34.1 TRi-Split Version of Geometrodynamics
- 34.2 TRiFol Itself
- 34.3 Many-Fingered and Bubble Times, and Deformation First Principles
- 34.4 Machian Hypersurface Kinematics
- 34.5 Machian Thin Sandwich Completion
- 34.6 TRi Refoliation Invariance

35 Classical-Level Conclusion

- 35.1 Classical Machian Emergent Time Approach
- 35.2 Denizens of Each Problem of Time Facet
- 35.3 Interferences Between Classical Problem of Time Facets
- 35.4 ii. Supporting Model Arenas
- 35.5 iii. Further Facets in the Case of GR
- 35.6 Further Orders of Passage Through the Problem of Time’s ‘Gates’
- 35.7 Ties Between Time and Other Concepts
36 Epilogue II.A. Threading and Null Formulations 439
 36.1 The 1 + 3 Threading Formulation 439
 36.2 Characteristic, 2 + 2 and Twistor Formulations 440
 36.3 Summary and Machian Evaluation 441

37 Epilogue II.B. Global Validity and Global Problems of Time 443
 37.1 Classical Emergent Machian Time 444
 37.2 Scale Times 447
 37.3 \mathfrak{g} Nontrivial. i. Monopoles in Configuration Space ... 447
 37.4 ii. Gribov Phenomena 448
 37.5 iii. Stratification and Its Consequences 449
 37.6 iv. Sheaf Methods 452
 37.7 Brackets and Constraint Closure 453
 37.8 Problem of Beables 454
 37.9 Timeless Approaches 455
 37.10 Spacetime Relationalism 455
 37.11 Histories Theory 456
 37.12 Combined Approach 456
 37.13 Space–Time Split, Foliations and Refoliation Invariance 457
 37.14 Spacetime Constructability 458

38 Epilogue II.C. Background Independence and Problem of Time at Deeper Levels of Structure 461
 38.1 Time, Background Independence and Problem of Time upon
 Descent. i. Persistent Features 463
 38.2 ii. Losses in Earlier Stages of Descent 467
 38.3 Topological Manifold Level 468
 38.4 Metric Space and Topological Space Levels 471
 38.5 Yet Deeper Levels of Structure 473

Part III Quantum Problem of Time

39 Geometrical Quantization. i. Kinematical Quantization 477
 39.1 Unconstrained Beables Come First in Geometrical Quantization 478
 39.2 Brackets Map Between Spaces of Objects 479
 39.3 Specifically Quantum Attributes of Brackets 479
 39.4 The Groenewold–Van Hove Phenomenon 480
 39.5 Examples of Kinematical Quantization 481
 39.6 ii. Further Global Nontriviality 487
 39.7 Conceptual Outline of the Kochen–Specker Theorem 487

40 Geometrical Quantization. ii. Dynamical Quantization 489
 40.1 Operator Ordering 489
 40.2 Quantum Wave Equations 491
 40.3 Addendum: \mathfrak{q}-Primality at the Quantum Level 492
41 Further Detail of Time and Temporal Relationalism in Quantum Theory 493
41.1 Time in Quantum Theory Revisited 493
41.2 The Quantum Frozen Formalism Problem 494
41.3 Temporal Relationalism Implementing Canonical Quantum Theory (TRiCQT) 495
41.4 Do Absolute and Relational Mechanics Give Distinct QM? . . . 495
41.5 Inner Product and Adjointness Issues 498

42 Geometrical Quantization with Nontrivial g. i. Finite Theories . 501
42.1 Configurational Relationalism at the Quantum Level 501
42.2 Dirac Quantization of Finite Models 502
42.3 Reduced Quantization of Finite Models 504
42.4 Three More Operator Ordering Problems 509

43 Geometrical Quantization with Nontrivial g. ii. Field Theories and GR ... 511
43.1 Further QFT Subtleties ... 511
43.2 Unconstrained Examples .. 512
43.3 Dirac Quantization of Geometrodynamics.
 i. Kinematical Quantization 512
43.4 ii. Dynamical Quantization 514
43.5 Dirac-Type Quantization of Nododynamics Alias LQG 516
43.6 Dirac Quantization of Super-RPM and Supergravity 518
43.7 Is Quantization Is a Functorial Prescription? 519

44 Tempus Ante Quantum ... 521
44.1 Finite g-Free Models ... 521
44.2 Nontrivial g Models .. 522
44.3 Problems with These Approaches 523

45 Tempus Post Quantum. i. Paralleling QFT 527
45.1 Attempting a Schrödinger Inner Product 527
45.2 Attempting a Klein-Gordon Inner Product Based on Riem Time 527
45.3 ‘Third Quantization’ Generalized and Renamed 528
45.4 Problem of Time Strategies in Affine Geometrodynamics 529

46 Tempus Post Quantum. ii. Semiclassical Machian Emergent Time . 531
46.1 Born–Oppenheimer Scheme 532
46.2 Discussion of Adiabatic Approximations 533
46.3 WKB Scheme .. 534
46.4 Scale–Shape Split h- and l-Equations 534
46.5 Semiclassical WKB Emergent Time 534
46.6 l-Time-Dependent Schrödinger Equation 536
46.7 Rectified Time and Its Relation to Shape Space 536
46.8 The WKB Assumption Is Crucial but Unjustified 537
47 Tempus Post Quantum. iii. Semiclassical Quantum Cosmological Modelling .. 539
47.1 Back-Reaction, Higher Derivative, and Expectation Terms 539
47.2 Solving the h-Equation for Emergent Machian Time 541
47.3 Some l-Time-Dependent Schrödinger Equation Regimes 543
47.4 Dirac-Quantized Semiclassical Schemes 544
47.5 Extension Including Fermions 546
47.6 Variational Methods for Quantum Cosmology 546
47.7 Perturbative Schemes 549
47.8 Problems .. 549

48 Semiclassicality and Quantum Cosmology: Interpretative Issues 551
48.1 Coherent States ... 551
48.2 Wigner Functionals .. 551
48.3 Decoherence .. 552
48.4 Environments ... 553
48.5 Is Physics only About Subsystems? 553

49 Quantum Constraint Closure 555
49.1 Split Quantum Constraint Structures and Nontrivial \mathcal{G} 556
49.2 (Counter)Examples of Quantum Constraint Closure 557
49.3 Anomalies ... 558
49.4 Strategies for Dealing with Quantum Constraint Closure Problem 559
49.5 Quantum Implications of Constraints Closing as Algebroids . 560
49.6 The Semiclassical Case .. 560
49.7 Is There a Quantum Dirac-Type Algorithm? 561

50 Quantum Beables or Observables 563
50.1 Types of Constrained Quantum Beables 563
50.2 Indirect Constructions for Quantum Dirac Beables D 565
50.3 Quantum-Level Problem of Beables 565
50.4 Beables Motivated from Realist Interpretations 567

51 Fully Timeless Approaches at the Quantum Level 569
51.1 Quantum-Level Propositions 569
51.2 Conditional Probabilities 572
51.3 Timeless Records Theories 575
51.4 Records Approaches with More than Just Timeless Structure 578

52 Spacetime Primary Approaches: Path Integrals 579
52.1 Unconstrained Models 579
52.2 Path Integrals in Gauge Theory 579
52.3 Strategies for GR Path Integrals 580
52.4 Temporal Relationalism Implementing Path Integral Quantum Theory (TRiPIQT) 583
52.5 Canonical-and-Path-Integral Approaches 584
53 Histories Theory at the Quantum Level .. 585
 53.1 Gell-Mann–Hartle-Type Histories Theory 585
 53.2 Histories Projection Operator (HPO) Approach 586
 53.3 Computation of Decoherence Functionals 587
 53.4 Further Theories, Structures and Problems 588
 53.5 TRi Quantum Histories Theory ... 589
 53.6 Further Examples of Histories Formulations 590
 53.7 Records Within Quantum Histories Theory 594

54 Combined Histories-Records-Semiclassical Approach 597
 54.1 \mathcal{G}-Free Models Without Machian Emergence 598
 54.2 Machian Time Version Sitting Within Semiclassical Approach 601
 54.3 Combined Approach for \mathcal{G}-Nontrivial Theories 602
 54.4 Construction of Quantum Dirac Beables from Quantum Kuchař Beables ... 603
 54.5 Frontiers of Research .. 604

55 Quantum Foliation Independence Strategies 607
 55.1 Constraint Algebraic Structure’s Ties to Other Facets 607
 55.2 Semiclassical Refoliation Invariance? 607
 55.3 Suitable Model Arenas for Quantum Foliation Issues 608
 55.4 Foliation Problems at the Quantum Level 609

56 Quantum Spacetime Construction Strategies 611
 56.1 Semiclassical Spacetime Construction 611
 56.2 Spacetime Construction in Histories Theory 612

57 Quantum-Level Conclusion .. 613
 57.1 The First Four Facets .. 613
 57.2 Spacetime, Timeless, Histories and Combined Approaches 616
 57.3 State of Completion in Model Arenas 617
 57.4 Research Frontiers .. 617

58 Epilogue III.A. The Multiple Choice Problem 621
 58.1 Multiple Choice Problems .. 621
 58.2 Strategies for the Multiple Choice Problems 622
 58.3 Specific Model Arenas ... 623

59 Epilogue III.B. Quantum Global Problems of Time 625
 59.1 Extending Classification of Global Problems of Time 625
 59.2 Semiclassical Approach .. 626
 59.3 Hidden Time Approaches .. 626
 59.4 Basic Monopole and Gribov Effects at the Quantum Level 627
 59.5 Quantum Issues Following from Stratification 627
 59.6 Constraint Closure ... 628
 59.7 Observables and Beables ... 629
 59.8 Timeless Approaches .. 630
 59.9 Paths and Histories Approaches .. 630
Contents

59.10 Combined Approach 631
59.11 Refoliation Invariance and Spacetime Construction 632

60 Epilogue III.C. Deeper Levels’ Quantum Background Independence and Problem of Time 635
60.1 Topological Manifold Level Considerations 636
60.2 Metric and Topological Space Level 637
60.3 Yet Deeper Levels of Structure 638
60.4 Situations with Negligible Deeper Levels of Structure 639
60.5 Records and Histories 639
60.6 Quantum Theory, Categories and Topoi 640
60.7 Multiple Choice Problem Revisited 641
60.8 Background Independence, Categories and Topoi 642

Appendices: Mathematical Methods for Basic and Foundational Quantum Gravity

Appendix A Basic Algebra and Discrete Mathematics 647
A.1 Sets and Relations 647
A.2 Groups .. 649
A.3 Linear Algebra. i. Fields and Vector Spaces 650
A.4 ii. Rings and Modules* 653
A.5 Representation Theory 653
A.6 Graphs and Generalizations 653

Appendix B Flat Geometry 655
B.1 Real Geometry .. 655
B.2 Minkowski Spacetime Geometries 659
B.3 Complex Transformations and Geometries 659

Appendix C Basic Analysis 661
C.1 Real Analysis .. 661
C.2 Basic Functional Analysis 663
C.3 Complex Analysis* 664
C.4 Metric Spaces .. 664
C.5 Inverse and Implicit Function Theorems* 664
C.6 Topological Spaces 665

Appendix D Manifold Geometry 667
D.1 Topological Manifolds 667
D.2 Differentiable Manifolds 669
D.3 Affine Differential Geometry 672
D.4 (Semi)Riemannian Manifolds 675
D.5 Some More General Metric Geometries* 677
D.6 Integration on Manifolds 678
D.7 Conformal Transformations, Metrics and Geometry 678
D.8 Exercises III. Basic Mathematics and Geometry 680
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.8</td>
<td>Further Auxiliary Spaces*</td>
<td>744</td>
</tr>
<tr>
<td>J.9</td>
<td>Corresponding Morphisms</td>
<td>744</td>
</tr>
<tr>
<td>J.10</td>
<td>Morphisms for the (Anti-)Routhian*</td>
<td>745</td>
</tr>
<tr>
<td>J.11</td>
<td>Poisson Brackets</td>
<td>746</td>
</tr>
<tr>
<td>J.12</td>
<td>Poisson Manifolds*</td>
<td>746</td>
</tr>
<tr>
<td>J.13</td>
<td>Peierls Bracket*</td>
<td>747</td>
</tr>
<tr>
<td>J.14</td>
<td>Hamilton–Jacobi Theory</td>
<td>748</td>
</tr>
<tr>
<td>J.15</td>
<td>Hamiltonian Formulation for Constrained Systems</td>
<td>748</td>
</tr>
<tr>
<td>J.16</td>
<td>(Anti-)Routhian Analogue of the Legendre Matrix*</td>
<td>752</td>
</tr>
<tr>
<td>J.17</td>
<td>Symplectic Treatment of Constrained Systems*</td>
<td>753</td>
</tr>
<tr>
<td>J.18</td>
<td>Constraint and Beables Algebraic Structures*</td>
<td>753</td>
</tr>
<tr>
<td>J.20</td>
<td>Classical Brackets Extended to Include Fermions*</td>
<td>755</td>
</tr>
</tbody>
</table>

Appendix K The Standard Principles of Dynamics. ii. Field Theory 757

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.1</td>
<td>Classification of Field-Theoretic Versions of the Principles of Dynamics</td>
<td>757</td>
</tr>
<tr>
<td>K.2</td>
<td>SR Spacetime Version</td>
<td>757</td>
</tr>
<tr>
<td>K.3</td>
<td>Space–Time Split SR Version</td>
<td>758</td>
</tr>
<tr>
<td>K.4</td>
<td>Curved Spacetime and GR Versions</td>
<td>760</td>
</tr>
<tr>
<td>K.5</td>
<td>Space–Time Split GR Version</td>
<td>761</td>
</tr>
</tbody>
</table>

Appendix L Temporal Relationalism Implementing Principles of Dynamics (TRiPoD)* 763

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>L.1</td>
<td>Finite-Field Theoretic Portmanteau Notation</td>
<td>763</td>
</tr>
<tr>
<td>L.2</td>
<td>Jacobi–Mach Formulation</td>
<td>763</td>
</tr>
<tr>
<td>L.3</td>
<td>Free End Notion of Space Variation</td>
<td>765</td>
</tr>
<tr>
<td>L.4</td>
<td>TRi Legendre Transformation</td>
<td>766</td>
</tr>
<tr>
<td>L.5</td>
<td>TRi-Morphisms and Brackets. i</td>
<td>767</td>
</tr>
<tr>
<td>L.6</td>
<td>\mathfrak{d}-Hamiltonians and Phase Spaces, and TRi Dirac-Type Algorithms</td>
<td>767</td>
</tr>
<tr>
<td>L.7</td>
<td>TRi-Morphisms and Brackets. ii)</td>
<td>770</td>
</tr>
<tr>
<td>L.8</td>
<td>TRi Constraint Algebraic Structures and Beables</td>
<td>770</td>
</tr>
<tr>
<td>L.9</td>
<td>TRi Hamilton–Jacobi Theory</td>
<td>770</td>
</tr>
<tr>
<td>L.10</td>
<td>TRiPoD End-Summary</td>
<td>771</td>
</tr>
<tr>
<td>L.11</td>
<td>Parageodesic Principle Split Conformal Transformations</td>
<td>771</td>
</tr>
</tbody>
</table>

Appendix M Quotient Spaces and Stratified Manifolds** 775

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.1</td>
<td>Quotienting out Groups: Further Useful Notions</td>
<td>775</td>
</tr>
<tr>
<td>M.2</td>
<td>Quotient Topologies</td>
<td>775</td>
</tr>
<tr>
<td>M.3</td>
<td>Orbifolds</td>
<td>776</td>
</tr>
<tr>
<td>M.4</td>
<td>Quotienting by Lie Group Action, and Slices</td>
<td>777</td>
</tr>
<tr>
<td>M.5</td>
<td>Stratified Manifolds</td>
<td>777</td>
</tr>
<tr>
<td>M.6</td>
<td>Locally Compact Hausdorff Second-Countable (LCHS) Spaces</td>
<td>780</td>
</tr>
<tr>
<td>M.7</td>
<td>Differential Spaces and Stratifolds</td>
<td>780</td>
</tr>
<tr>
<td>M.8</td>
<td>Further Stratified Spaces from the Principles of Dynamics</td>
<td>780</td>
</tr>
</tbody>
</table>
Appendix N Reduced Configuration Spaces for Field Theory and GR** 781

N.1	Gauge Group Orbit Spaces	781
N.2	Loops and Loop Spaces for Gauge Theory	782
N.3	Topology of $\mathcal{G} = \text{Diff}(\Sigma)$	782
N.4	Topology of Superspace(Σ)	783
N.5	Comparison Between Theories. i. Theorems	784
N.6	ii. Handling Dynamical Trajectories Exiting a Stratum	785
N.7	$\mathcal{CS}(\Sigma)$ and $\{\mathcal{CS} + V\}(\Sigma)$	786
N.8	Notions of Distance for Geometrodynamics	787
N.9	Modelling with Infinite-d Stratifolds	788
N.10	Reduced Treatment of Slightly Inhomogeneous Cosmology	788
N.11	Further Configuration Spaces	790
N.12	Loops and Loop Spaces	790
N.13	Knots and Knotspace	791

Appendix O DE Theorems for Geometrodynamics’ Problem of Time* 793

O.1	Types of Global Issues	793
O.2	ODEs	794
O.3	First-Order PDEs	795
O.4	Second-Order PDEs	795
O.5	GR Initial Value Problem Theorems. i. Thin Sandwich Approach	796
O.6	ii. Conformal Approach	797
O.7	Theorems for the GR Cauchy Problem	797
O.8	Basic FDE Theory for GR and QFT	798

Appendix P Function Spaces, Measures and Probabilities 801

P.1	Basic Formulation of Probability	801
P.2	Measure Theory*	803
P.3	More Advanced Formulation of Probability*	804
P.4	Distributions (in the Sense of Functional Analysis)*	805
P.5	Further Useful Function Spaces*	805

Appendix Q Statistical Mechanics (SM), Information, Correlation 807

Q.1	Thermodynamics	807
Q.2	Thermodynamics for GR More Generally*	808
Q.3	Spaces of Substates*	809
Q.4	Imperfect Knowledge of a (Sub)system*	809
Q.5	Classical Statistical Mechanics (SM)	810
Q.6	Fine- and Coarse-Graining	811
Q.7	Classical Microscopic Notions of Entropy	813
Q.8	Classical Notions of Information*	813
Q.9	Classical Notions of Correlation*	814

Appendix R Stochastic Geometry* 817

| R.1 | Metric Shape Statistics | 817 |
| R.2 | Stratified Manifold Version** | 819 |
Appendix S Deeper Levels. i. Generalized Configuration Spaces**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.1</td>
<td>Spaces of Differentiable Structures</td>
<td>821</td>
</tr>
<tr>
<td>S.2</td>
<td>Spaces of Topological Manifolds</td>
<td>821</td>
</tr>
<tr>
<td>S.3</td>
<td>Spaces of Metric Spaces</td>
<td>823</td>
</tr>
<tr>
<td>S.4</td>
<td>Lattices</td>
<td>824</td>
</tr>
<tr>
<td>S.5</td>
<td>Spaces of Subgroups, Topological Spaces and Collections</td>
<td>825</td>
</tr>
<tr>
<td>S.6</td>
<td>Spaces of Sets?</td>
<td>826</td>
</tr>
</tbody>
</table>

Appendix T Deeper Levels. ii. Grainings, Information, Stochastics and Statistics**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>T.1</td>
<td>Grainings</td>
<td>827</td>
</tr>
<tr>
<td>T.2</td>
<td>Notions of Information or Entropy</td>
<td>827</td>
</tr>
<tr>
<td>T.3</td>
<td>Stochastic and Statistical Treatment.</td>
<td>828</td>
</tr>
<tr>
<td></td>
<td>i. Topological Manifold Level</td>
<td>828</td>
</tr>
<tr>
<td>T.4</td>
<td>ii. Topological Space Level</td>
<td>828</td>
</tr>
<tr>
<td>T.5</td>
<td>iii. Set and Collection of Subsets Levels</td>
<td>828</td>
</tr>
</tbody>
</table>

Appendix U Quantum SM, Information and Correlation*

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.1</td>
<td>Mixed States</td>
<td>829</td>
</tr>
<tr>
<td>U.2</td>
<td>Quantum Grainings</td>
<td>830</td>
</tr>
<tr>
<td>U.3</td>
<td>Quantum Versus Standard Probability Theory</td>
<td>831</td>
</tr>
<tr>
<td>U.4</td>
<td>Quantum SM</td>
<td>832</td>
</tr>
<tr>
<td>U.5</td>
<td>Quantum Notions of Entropy and Information</td>
<td>832</td>
</tr>
<tr>
<td>U.6</td>
<td>Quantum Correlations</td>
<td>832</td>
</tr>
</tbody>
</table>

Appendix V Further Algebraic Structures*

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.1</td>
<td>Reps. i. Semidirect Product Groups in General</td>
<td>835</td>
</tr>
<tr>
<td>V.2</td>
<td>ii. Super-Poincaré Groups</td>
<td>836</td>
</tr>
<tr>
<td>V.3</td>
<td>iii. Diffeomorphism Groups</td>
<td>836</td>
</tr>
<tr>
<td>V.4</td>
<td>iv. Super-diffeomorphism Groups</td>
<td>837</td>
</tr>
<tr>
<td>V.5</td>
<td>v. For Kinematical Quantization of GR</td>
<td>837</td>
</tr>
<tr>
<td>V.6</td>
<td>Algebroids and Their Reps</td>
<td>837</td>
</tr>
<tr>
<td>V.7</td>
<td>Operator Algebras</td>
<td>838</td>
</tr>
</tbody>
</table>

Appendix W Alternative Foundations for Mathematics**

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>W.1</td>
<td>Categories</td>
<td>841</td>
</tr>
<tr>
<td>W.2</td>
<td>Presheaves</td>
<td>843</td>
</tr>
<tr>
<td>W.3</td>
<td>Sheaves</td>
<td>843</td>
</tr>
<tr>
<td>W.4</td>
<td>Topoi</td>
<td>846</td>
</tr>
</tbody>
</table>

Appendix X Outline of Notation

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>X.1</td>
<td>For Part I and Unstarred Appendices</td>
<td>849</td>
</tr>
<tr>
<td>X.2</td>
<td>Additional Notation for Parts II and III, and Starred Appendices</td>
<td>850</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>851</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>885</td>
</tr>
</tbody>
</table>
The Problem of Time
Quantum Mechanics Versus General Relativity
Anderson, E.
2017, XXXVIII, 920 p. 172 illus., 66 illus. in color.,
Hardcover
ISBN: 978-3-319-58846-9