Contents

Part I Time in Fundamental Physics

1 Introduction: Conceptual Outline of Time 3
 1.1 Time-Related Notions 3
 1.2 Space-Related Notions Make for Useful Comparison 4
 1.3 Physical Limitations on Intuitive Notions of Time and Space . 6
 1.4 Events ... 6
 1.5 Philosophical Worldviews of Time 6
 1.6 Some Properties Attributed to Time 7
 1.7 Continuum Mathematics Models for Time 9
 1.8 Some Basic Properties of Timefunctions 9
 1.9 Non-continuum Modelling of Time 11
 1.10 Mathematical Modelling of Space 12
 1.11 Advent of Notions of Spacetime 12
 1.12 ‘Measuring Time’: Extra Connotations in the Word ‘Clock’ . 14
 1.13 Measuring Length 17

2 Time, Space and Laws in Newtonian Mechanics 19
 2.1 Newton’s Laws of Mechanics 19
 2.2 Impact of Newtonian Mechanics 20
 2.3 Newtonian Absolute Space 21
 2.4 Newtonian Absolute Time 21
 2.5 Aristotelian, Galilean and Newtonian Paradigms Compared .. 22
 2.6 Newton’s Bucket 24
 2.7 Newtonian Gravity 24
 2.8 Electrostatics 26
 2.9 Gravitation and Electrostatics Compared 26
 2.10 Magnetostatics 27
 2.11 Light Flashes 28
 2.12 Cartesian and Curvilinear Tensors Within the Newtonian
 Paradigm .. 28
 2.13 Principles of Dynamics (PoD) formulations of Mechanics ... 30
Contents

3 Absolute Versus Relational Motion Debate ... 33
 3.1 Two Centuries of Critique of the Newtonian Paradigm 33
 3.2 Concrete Example of Relational Particle Mechanics (RPM) 36
 3.3 Ephemeris Time as a Realization of Mach’s Time Principle 36
 3.4 Universality of Relational Thinking .. 37
 3.5 Electromagnetic Unification and the Luminiferous Aether 37

4 Time, Space, Spacetime and Laws in Special Relativity 41
 4.1 Special Relativity (SR) .. 41
 4.2 Invariant Interval, Indefinite Metric and Proper Time 42
 4.3 Minkowski Spacetime’s Geometrical Structure and Its Physical Meaning 44
 4.4 Lorentzian Tensors (Alias 4-Tensors) ... 47
 4.5 Minkowskian Paradigm of Physics .. 47
 4.6 More on Time and Spacetime in the Minkowskian Paradigm 48
 4.7 More on SR Clocks ... 50
 4.8 Length Measurement in SR ... 51
 4.9 Einstein’s Eventual Opinion on the Theoretical Status of Clocks and Rods ... 51
 4.10 Exercises I. Time in Mechanics and SR ... 52

5 Time and Ordinary Quantum Mechanics (QM) .. 55
 5.1 A Simple Axiomatization of QM ... 55
 5.2 Experimental Support for QM and Examples 59
 5.3 Time in Nonrelativistic QM .. 60
 5.4 Clocks in QM .. 62
 5.5 Advent of Atomic Clocks ... 63
 5.6 Quantum Inputs to Measuring Lengths and Masses 64

6 Quantum Field Theory (QFT) ... 65
 6.1 Free Spin-0 Field ... 65
 6.2 Free Spin-½ Field ... 67
 6.3 Free Spin-1 Field: Electromagnetism, and Its Gauge Symmetry 68
 6.4 Time in Quantum SR ... 70
 6.5 Interacting Field Theories, Including Quantum Electrodynamics (QED) 71
 6.6 Yang–Mills Theory Underlying the Nuclear Forces 73
 6.7 Discrete Operations (Including Time-Reversal) in Quantum SR 75
 6.8 Quantum-Level Evidence for SR ... 76
 6.9 Grand Unified Theories ... 76
 6.10 Exercises II. Time and Quantum Theory .. 76

7 Time and Spacetime in General Relativity (GR) 79
 7.1 More Systematic Formulation of GR’s Mathematics 83
 7.2 Spacetime Action Principle for GR .. 84
 7.3 Black Holes ... 85
 7.4 Cosmology ... 88
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>Evidence for GR</td>
<td>89</td>
</tr>
<tr>
<td>7.6</td>
<td>Notions of Time in the Spacetime Formulation of GR</td>
<td>91</td>
</tr>
<tr>
<td>7.7</td>
<td>GR Issues with Clocks</td>
<td>92</td>
</tr>
<tr>
<td>7.8</td>
<td>Observers and Length Measurement in GR</td>
<td>93</td>
</tr>
<tr>
<td>7.9</td>
<td>GR’s Singularity Theorems</td>
<td>94</td>
</tr>
<tr>
<td>8</td>
<td>Dynamical Formulations of GR</td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>Topological Manifold Level Structure</td>
<td>95</td>
</tr>
<tr>
<td>8.2</td>
<td>Differential Geometry Level Structure</td>
<td>96</td>
</tr>
<tr>
<td>8.3</td>
<td>Metric Level Structure</td>
<td>97</td>
</tr>
<tr>
<td>8.4</td>
<td>Single-Hypersurface Concepts</td>
<td>97</td>
</tr>
<tr>
<td>8.5</td>
<td>Two-Hypersurface and Foliation Concepts</td>
<td>100</td>
</tr>
<tr>
<td>8.6</td>
<td>Foliations in Terms of Fleets of Possible Observers</td>
<td>102</td>
</tr>
<tr>
<td>8.7</td>
<td>Completion of the Curvature Projection Equations</td>
<td></td>
</tr>
<tr>
<td>8.8</td>
<td>A Further Type of Diffeomorphism: $\text{Diff}(\mathcal{M}, \mathcal{F}_{\text{ol}})$</td>
<td>104</td>
</tr>
<tr>
<td>8.9</td>
<td>Space–Time Split of the GR Action</td>
<td>104</td>
</tr>
<tr>
<td>8.10</td>
<td>The GR Action Equips $\mathfrak{Riem}(\Sigma)$ with a Metric Geometry</td>
<td>105</td>
</tr>
<tr>
<td>8.11</td>
<td>GR’s Momenta</td>
<td>106</td>
</tr>
<tr>
<td>8.12</td>
<td>GR’s Constraints</td>
<td>106</td>
</tr>
<tr>
<td>8.13</td>
<td>GR’s Evolution Equations</td>
<td>107</td>
</tr>
<tr>
<td>8.14</td>
<td>Other Classical Applications of Geometrodynamics</td>
<td>108</td>
</tr>
<tr>
<td>8.15</td>
<td>Outline of Ashtekar Variables Alternative</td>
<td>109</td>
</tr>
<tr>
<td>8.16</td>
<td>Exercises V. Spacetime and Dynamical Formulations of GR</td>
<td>110</td>
</tr>
<tr>
<td>9</td>
<td>Classical-Level Background Independence and the Problem of Time. i. Time and Configuration</td>
<td>115</td>
</tr>
<tr>
<td>9.1</td>
<td>Many Routes to GR</td>
<td>118</td>
</tr>
<tr>
<td>9.2</td>
<td>Dynamics in the Great Tradition</td>
<td>118</td>
</tr>
<tr>
<td>9.3</td>
<td>Spacetime Versus ‘Space or Configuration Space’</td>
<td>119</td>
</tr>
<tr>
<td>9.4</td>
<td>Configuration Spaces \mathcal{Q}</td>
<td>119</td>
</tr>
<tr>
<td>9.5</td>
<td>Configuration Spaces as Starting Point for Dynamics</td>
<td>121</td>
</tr>
<tr>
<td>9.6</td>
<td>Constraints Are All Versus Constraint Providers</td>
<td>121</td>
</tr>
<tr>
<td>9.7</td>
<td>Background Independence Aspect 1: Temporal Relationalism</td>
<td>122</td>
</tr>
<tr>
<td>9.8</td>
<td>Aspect 2: Configurational Relationalism</td>
<td>125</td>
</tr>
<tr>
<td>9.9</td>
<td>Minisuperspace Model Arena Version</td>
<td>129</td>
</tr>
<tr>
<td>9.10</td>
<td>Temporal and Configurational Relationalism Lead to Two of the Problem of Time Facets</td>
<td>130</td>
</tr>
<tr>
<td>9.11</td>
<td>Other Timefunction-Based Problem of Time Strategies</td>
<td>131</td>
</tr>
<tr>
<td>9.12</td>
<td>Fully Timeless Strategies</td>
<td>133</td>
</tr>
<tr>
<td>9.13</td>
<td>Providers, Algebraic Structure, and Beables</td>
<td>133</td>
</tr>
<tr>
<td>9.14</td>
<td>Aspect 3: Constraint Closure</td>
<td>134</td>
</tr>
<tr>
<td>9.15</td>
<td>Aspect 4: Assignment of Beables</td>
<td>137</td>
</tr>
<tr>
<td>10</td>
<td>Classical-Level Background Independence and the Problem of Time. ii. Spacetime and Its Interrelation with Space</td>
<td>141</td>
</tr>
<tr>
<td>10.1</td>
<td>Aspect 5: Spacetime Relationalism</td>
<td>141</td>
</tr>
</tbody>
</table>
10.2 Closure of $\text{Diff}(\mathcal{M})$... 142
10.3 Further Detail of This Book’s Concepts and Terminology 142
10.4 Spacetime Observables .. 144
10.5 Classical-Level Background Metrics 145
10.6 Paths and Histories Strategies .. 145
10.7 Web of Classical Problem of Time Strategies 146
10.8 Aspect 6: Foliation Independence 146
10.9 Aspect 7: Spacetime Constructability 147
10.10 Model Arenas, Diffeomorphisms and Slightly Inhomogeneous Cosmology ... 149
10.11 Summary so Far: Seven Gates ... 150
10.12 Frontiers .. 150

11 Quantum Gravity Programs .. 157
11.1 Basic Considerations .. 157
11.2 Covariant Approach to Quantum Gravity 160
11.3 Quantum Field Theory in Curved Spacetime (QFTiCS) 163
11.4 Canonical Quantum Wave Equations 166
11.5 Quantum Cosmology .. 167
11.6 Path Integral Approach for Gravitational Theories 168
11.7 Covariant Approaches to Alternative Theories 169
11.8 Perturbative String Theory ... 172
11.9 Ashtekar Variables and Loop Quantum Gravity 175
11.10 Canonical Approach to Supergravity 176
11.11 Brane, Null Line, and Relational Alternatives 177
11.12 M-Theory ... 178
11.13 Conclusion: A Family Tree Overview 179

12 Quantum-Level Background Independence and the Problem of Time .. 181
12.1 Quantum Frozen Formalism Problem 181
12.2 Timefunction-Based Strategies for Frozenness 182
12.3 Quantum Configurational Relationalism 185
12.4 Quantum Constraint Closure .. 185
12.5 Quantum Assignment of Beables 187
12.6 Quantum-Level Timeless Approaches 187
12.7 Quantum Spacetime Relationalism 188
12.8 Path Integral Approaches ... 189
12.9 Consistent Histories Approaches 190
12.10 Web of Quantum Problem of Time Strategies 191
12.11 Quantum Foliation Independence: Aspect 6) 191
12.12 Quantum Spacetime Constructability 191
12.13 Summary of a Local Problem of Time 193
12.14 Aspect 8: Global Validity ... 194
12.15 Aspect 9: No Unexplained Multiplicities 194
12.16 Conclusion. i. Summary Figures 195
12.17 ii. Quantum-Level Frontiers ... 196
12.18 Exercises VI: Quantum Gravity, Background Independence and
the Problem of Time ... 197

Part II Classical Problem of Time

13 Advanced Nomenclature for Facet Interference 205
13.1 The Various Primary Ontologies Considered 205
13.2 The Cubert Classification of Quantization and Facets Ordering 207

14 Configuration Spaces and Their Configurational Relationalism ... 209
14.1 Examples of Configuration Spaces 209
14.2 Configurational Relationalism. i. Principles Discussed 210
14.3 ii. Direct Implementation ... 210
14.4 iii. ‘\(\mathcal{G}\)-Act \(\mathcal{G}\)-All’ Method: Wider Indirect Implementation ... 211
14.5 On the Variety of Relational Configurations and RPMs 213

15 Temporal Relationalism (TR) ... 217
15.1 General Enough Temporal Relationalism Implementing (TRi)
Strategies ... 217
15.2 Equivalence to the Euler–Lagrange Formulation 221
15.3 TRi Form of Conjugate Momentum 221
15.4 Jacobi–Mach Equations of Motion 222
15.5 Differential Hamiltonian ... 222
15.6 Quadratic Constraints from Temporal Relationalism 223
15.7 Mach’s Time Principle and Its Implementations 224
15.8 Discussion of Generalized Local Ephemeris Time (GLET) ... 226
15.9 Emergent Jacobi Time .. 227

16 Combining Temporal and Configurational Relationalisms 231
16.1 Best Matching: General \(\mathcal{G}\) 231
16.2 TRi-Best Matching ... 233
16.3 Emergent Jacobi–Barbour–Bertotti Time 234
16.4 TRi Configurational Relationalism in General 235
16.5 Example 1) Metric Shape and Scale RPM 235
16.6 Example 2) Metric Shape RPM 236
16.7 RPM Examples of Best Matching Solved 237
16.8 Direct Implementation of Configurational Relationalism
for RPMs ... 238
16.9 Limitations of RPM Models ... 240

17 Temporal Relationalism: More General Geometries 243
17.1 Minisuperspace GR .. 243
17.2 Jacobi–Synge Relational Actions 244

18 Configurational Relationalism: Field Theory and GR’s Thin
Sandwich ... 247
18.1 Fields and Finite-Field Portmanteaux 247
18.2 Configurational Relationalism Including Fields 248
18.3 Example 1) Electromagnetism Alone 251
18.4 Example 2) GR .. 251
18.5 Baierlein–Sharp–Wheeler Action and the Thin Sandwich 252
18.6 The Thin Sandwich Problem 253
18.7 Reparametrization-Invariant Relational Action for GR 253
18.8 Geometrical Action for GR 253
18.9 TRI Form of the Thin Sandwich 254
18.10 Comments on GR’s Emergent Machian Time 255
18.11 Example 3) GR with Fundamental Matter Fields 257
18.12 Example 4) Strong Gravity 259

19 Relationalism in Various Further Settings 261
19.1 Multiple Distinct Uses of the Word ‘Relational’ 261
19.2 Well-Known Theoretical Variants in Upper Layers
of Mathematical Structure 262
19.3 Relationalism and Affine Geometry 262
19.4 Relationalism and Conformal Geometry 263
19.5 Relationalism and the Point at Infinity 264
19.6 The Fermionic Selection Criterion 264
19.7 Relationalism in Ashtekar Variables Formulation of GR 265
19.8 Relationalism and Supersymmetry 267
19.9 Supersymmetric, Conformal and Affine Combinations 269
19.10 String and M-Theory Versus Relationalism 269

20 Other Tempus Ante Quantum Approaches 271
20.1 The Ante Postulate .. 271
20.2 Riem Time’s Hyperbolic Implementation 271
20.3 Scale Factor, Cosmic and Conformal Times 273
20.4 Parabolic and Part-Linear Implementations 274
20.5 Hidden Time Approaches 274
20.6 Implementation by Unhidden Time 275

21 Conformal Approach and Its York Time 277
21.1 Trace-Tracefree Irreducible Tensor Split 277
21.2 Maximal and CMC Slices, and Conformal Scaling 277
21.3 Model Arenas .. 278
21.4 Underlying Conformal Configuration Spaces 279
21.5 Canonical Twist and Definition of York and Euler Times 281
21.6 Dilational Time for Nontrivial \tilde{g} 283
21.7 Monotonicity of Dilational Times 285

22 Matter Times ... 287
22.1 Straightforward Matter Time 287
22.2 Reference-Fluid Matter Time 287
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>Classical Machian Emergent Time</td>
<td>289</td>
</tr>
<tr>
<td>23.1</td>
<td>Critique of the Previous Three Chapters’ Notions of Time</td>
<td>289</td>
</tr>
<tr>
<td>23.2</td>
<td>Time Transformations in the Relational Approach</td>
<td>290</td>
</tr>
<tr>
<td>23.3</td>
<td>Examples of Mass Hierarchies and Heavy–Light ($h-l$) Splits</td>
<td>291</td>
</tr>
<tr>
<td>23.4</td>
<td>Problems with Classical Precursors of Assumptions Commonly Made in Semiclassical Quantum Cosmology</td>
<td>295</td>
</tr>
<tr>
<td>24</td>
<td>Brackets, Constraints and Closure</td>
<td>297</td>
</tr>
<tr>
<td>24.1</td>
<td>General Consideration of Equipping with Brackets</td>
<td>298</td>
</tr>
<tr>
<td>24.2</td>
<td>Poisson Brackets and Phase Space</td>
<td>298</td>
</tr>
<tr>
<td>24.3</td>
<td>Lessons from the Dirac Algorithm</td>
<td>299</td>
</tr>
<tr>
<td>24.4</td>
<td>Some Temporal, Configurational and Closure Facet Interferences</td>
<td>302</td>
</tr>
<tr>
<td>24.5</td>
<td>Partitioned Constraint Algebraic Structures</td>
<td>304</td>
</tr>
<tr>
<td>24.6</td>
<td>The Remaining Temporal, Configurational and Closure Facet Interferences</td>
<td>305</td>
</tr>
<tr>
<td>24.7</td>
<td>Seven Strategies for Dealing with Constraint Closure Problems</td>
<td>306</td>
</tr>
<tr>
<td>24.8</td>
<td>Examples of Distinctions Between Types of Constraint</td>
<td>308</td>
</tr>
<tr>
<td>24.9</td>
<td>Examples of Constraint Algebraic Structures</td>
<td>310</td>
</tr>
<tr>
<td>24.10</td>
<td>Examples of Constraint Closure Problems</td>
<td>313</td>
</tr>
<tr>
<td>24.11</td>
<td>The Further Example of Supergravity</td>
<td>315</td>
</tr>
<tr>
<td>24.12</td>
<td>Lattice of Constraint Subalgebraic Structures</td>
<td>317</td>
</tr>
<tr>
<td>25</td>
<td>Taking Function Spaces Thereover: Beables and Observables</td>
<td>321</td>
</tr>
<tr>
<td>25.1</td>
<td>In the Absence of Facet Interference</td>
<td>321</td>
</tr>
<tr>
<td>25.2</td>
<td>The First Great Decoupling of Problem of Time Facets</td>
<td>321</td>
</tr>
<tr>
<td>25.3</td>
<td>Sources of Variety Among Classical Notions of Beables</td>
<td>322</td>
</tr>
<tr>
<td>25.4</td>
<td>Posing Concrete Mathematical Problems for Beables</td>
<td>323</td>
</tr>
<tr>
<td>25.5</td>
<td>Notions of Beables: Examples and Lattice Structure</td>
<td>324</td>
</tr>
<tr>
<td>25.6</td>
<td>Strategies for the Problem of Beables</td>
<td>325</td>
</tr>
<tr>
<td>25.7</td>
<td>Classical Kuchař Beables: \mathfrak{d}DEs and Solutions</td>
<td>328</td>
</tr>
<tr>
<td>25.8</td>
<td>Examples of Classical Dirac Beables</td>
<td>332</td>
</tr>
<tr>
<td>25.9</td>
<td>Examples of Further Notions of Beables</td>
<td>333</td>
</tr>
<tr>
<td>26</td>
<td>Fully Timeless Approaches</td>
<td>337</td>
</tr>
<tr>
<td>26.1</td>
<td>Propositions in the Classical Context</td>
<td>337</td>
</tr>
<tr>
<td>26.2</td>
<td>Fully Timeless Approaches</td>
<td>339</td>
</tr>
<tr>
<td>26.3</td>
<td>Supplanting Questions of Being at a Time</td>
<td>339</td>
</tr>
<tr>
<td>26.4</td>
<td>Classical Timeless Structures. i. Good \mathfrak{g} Quantities</td>
<td>340</td>
</tr>
<tr>
<td>26.5</td>
<td>ii. Sub- and Super-structures for \mathfrak{q}</td>
<td>340</td>
</tr>
<tr>
<td>26.6</td>
<td>iii. Information, Correlation and Patterns in \mathfrak{q}</td>
<td>340</td>
</tr>
<tr>
<td>26.7</td>
<td>iv. Formalization by Stochastic Mathematics on \mathfrak{q}</td>
<td>341</td>
</tr>
<tr>
<td>26.8</td>
<td>Supplanting Questions of Becoming by a Semblance of Dynamics</td>
<td>343</td>
</tr>
<tr>
<td>26.9</td>
<td>Cambium Records</td>
<td>346</td>
</tr>
</tbody>
</table>
27 Spacetime Relationalism .. 347
 27.1 Implementation of Spacetime Relationalism 347
 27.2 $\text{Diff}(\mathcal{M})$’s Brackets and Algebraic Structure ... 348
 27.3 The Space of Spacetimes and of GR Solutions 348
 27.4 The Path (Via) Alternative 349
 27.5 Spacetime Observables 349
 27.6 Use $\text{Diff}(\mathcal{M})$ or Some Larger Group? 350
 27.7 Relationalism as Alternative Route to Physical Theories ... 351
 27.8 Contrast Between Spacetime and Temporal and Configurational Relationalisms 352

28 Classical Histories Theory 355
 28.1 \mathcal{G}-Free Case 355
 28.2 \mathcal{G}-Nontrivial Classical Histories 357
 28.3 Classical Histories Constraint Closure and Beables 357

29 Classical Machian Combined Approach 359
 29.1 Classical Machian Histories 359
 29.2 Records Within Classical Histories Theory 361
 29.3 Beables in the Combined Approach 363

30 Slightly Inhomogeneous Cosmology (SIC) 365
 30.1 Relational Action for SIC 365
 30.2 Constraints for SIC 367
 30.3 Constraint Closure Posed 368
 30.4 Outcome of Dirac Algorithm and Thin Sandwich 370
 30.5 Beables for SIC ... 374
 30.6 The Averaging Problem in GR 376
 30.7 SIC Records ... 376
 30.8 SIC Histories .. 376
 30.9 Summary of the Model Arenas 377
 30.10 Frontiers of Research 377

31 Embeddings, Slices and Foliations 379
 31.1 Single-Slice Concepts. i. Topological and Differentiable Manifold Levels 379
 31.2 ii. Metric Level ... 380
 31.3 More General Examples 382
 31.4 Spaces of Embeddings and of Slices 382
 31.5 Foliation in Terms of a Decorated Chart 383
 31.6 ADM Kinematics for Foliations 383
 31.7 Spaces of Foliations 386
 31.8 Refoliation Invariance 386
 31.9 Bubble Time and Its Dual: Many-Fingered Time 386
 31.10 Issues Involving Specific Foliations 387
 31.11 Various Other Arenas’ (Lack of) Foliation Concepts 388
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>Applications of Split Spacetime, Foliations and Deformations</td>
<td>391</td>
</tr>
<tr>
<td>32.1</td>
<td>Deformation Approach to Geometrodynamics</td>
<td>391</td>
</tr>
<tr>
<td>32.2</td>
<td>Universal Kinematics for Hypersurfaces in Spacetime (ADM Split Version)</td>
<td>393</td>
</tr>
<tr>
<td>32.3</td>
<td>Thin Sandwich Completion in Terms of Hypersurface Kinematics</td>
<td>394</td>
</tr>
<tr>
<td>32.4</td>
<td>Space–Time Split Account of Observables or Beables</td>
<td>394</td>
</tr>
<tr>
<td>32.5</td>
<td>Difference Between Hamiltonians and Gauge Generators</td>
<td>396</td>
</tr>
<tr>
<td>32.6</td>
<td>‘Nothing Happens’ Fallacy</td>
<td>397</td>
</tr>
<tr>
<td>32.7</td>
<td>Discussion</td>
<td>398</td>
</tr>
<tr>
<td>32.8</td>
<td>Foliation Considerations end Unimodular Approach to Problem of Time</td>
<td>398</td>
</tr>
<tr>
<td>32.9</td>
<td>Spacetime Considerations end Unimodular Approach to Problem of Internal Time</td>
<td>399</td>
</tr>
<tr>
<td>32.10</td>
<td>Covariant-and-Canonical Histories Theory</td>
<td>399</td>
</tr>
<tr>
<td>33</td>
<td>Spacetime Construction and Alternative Emergent Structures</td>
<td>401</td>
</tr>
<tr>
<td>33.1</td>
<td>Relational First Principles Ansatz for Geometrodynamical Theories</td>
<td>402</td>
</tr>
<tr>
<td>33.2</td>
<td>Geometrodynamical Consistency, Local Relativity and Spacetime Construction</td>
<td>403</td>
</tr>
<tr>
<td>33.3</td>
<td>Strongly Vanishing Options: GR, Strong Gravity, Geometrostatics</td>
<td>404</td>
</tr>
<tr>
<td>33.4</td>
<td>Family Ansatz for Addition of Minimally-Coupled Matter</td>
<td>407</td>
</tr>
<tr>
<td>33.5</td>
<td>The 3 Strong Obstruction Factors as Relativities</td>
<td>408</td>
</tr>
<tr>
<td>33.6</td>
<td>The Fourth Weakly-Vanishing Factor</td>
<td>410</td>
</tr>
<tr>
<td>33.7</td>
<td>Discover-and-Encode Approach to Physics</td>
<td>410</td>
</tr>
<tr>
<td>33.8</td>
<td>Conformogeometrodynamics Assumed</td>
<td>412</td>
</tr>
<tr>
<td>33.9</td>
<td>Simpler Cases of Spacetime Constructability</td>
<td>415</td>
</tr>
<tr>
<td>33.10</td>
<td>Caveats on Further Matter Results</td>
<td>416</td>
</tr>
<tr>
<td>34</td>
<td>TRi Foliation (TRiFol)</td>
<td>419</td>
</tr>
<tr>
<td>34.1</td>
<td>TRi-Split Version of Geometrodynamics</td>
<td>419</td>
</tr>
<tr>
<td>34.2</td>
<td>TRiFol Itself</td>
<td>422</td>
</tr>
<tr>
<td>34.3</td>
<td>Many-Fingered and Bubble Times, and Deformation First Principles</td>
<td>424</td>
</tr>
<tr>
<td>34.4</td>
<td>Machian Hypersurface Kinematics</td>
<td>424</td>
</tr>
<tr>
<td>34.5</td>
<td>Machian Thin Sandwich Completion</td>
<td>425</td>
</tr>
<tr>
<td>34.6</td>
<td>TRi Refoliation Invariance</td>
<td>429</td>
</tr>
<tr>
<td>35</td>
<td>Classical-Level Conclusion</td>
<td>431</td>
</tr>
<tr>
<td>35.1</td>
<td>Classical Machian Emergent Time Approach</td>
<td>431</td>
</tr>
<tr>
<td>35.2</td>
<td>Denizens of Each Problem of Time Facet</td>
<td>431</td>
</tr>
<tr>
<td>35.3</td>
<td>Interferences Between Classical Problem of Time Facets.</td>
<td>432</td>
</tr>
<tr>
<td>35.4</td>
<td>ii. Supporting Model Arenas</td>
<td>433</td>
</tr>
<tr>
<td>35.5</td>
<td>iii. Further Facets in the Case of GR</td>
<td>434</td>
</tr>
<tr>
<td>35.6</td>
<td>Further Orders of Passage Through the Problem of Time’s ‘Gates’</td>
<td>435</td>
</tr>
<tr>
<td>35.7</td>
<td>Ties Between Time and Other Concepts</td>
<td>437</td>
</tr>
</tbody>
</table>
36 Epilogue II.A. Threading and Null Formulations ... 439
36.1 The $1 + 3$ Threading Formulation ... 439
36.2 Characteristic, $2 + 2$ and Twistor Formulations 440
36.3 Summary and Machian Evaluation ... 441

37 Epilogue II.B. Global Validity and Global Problems of Time 443
37.1 Classical Emergent Machian Time ... 444
37.2 Scale Times ... 447
37.3 \mathfrak{G} Nontrivial. i. Monopoles in Configuration Space 447
37.4 ii. Gribov Phenomena ... 448
37.5 iii. Stratification and Its Consequences ... 449
37.6 iv. Sheaf Methods .. 452
37.7 Brackets and Constraint Closure ... 453
37.8 Problem of Beables .. 454
37.9 Timeless Approaches .. 455
37.10 Spacetime Relationalism .. 455
37.11 Histories Theory ... 456
37.12 Combined Approach .. 456
37.13 Space–Time Split, Foliations and Refoliation Invariance 457
37.14 Spacetime Constructability ... 458

38 Epilogue II.C. Background Independence and Problem of Time at Deeper Levels of Structure .. 461
38.1 Time, Background Independence and Problem of Time upon Descent. i. Persistent Features ... 463
38.2 ii. Losses in Earlier Stages of Descent ... 467
38.3 Topological Manifold Level .. 468
38.4 Metric Space and Topological Space Levels .. 471
38.5 Yet Deeper Levels of Structure .. 473

Part III Quantum Problem of Time

39 Geometrical Quantization. i. Kinematical Quantization 477
39.1 Unconstrained Beables Come First in Geometrical Quantization 478
39.2 Brackets Map Between Spaces of Objects ... 479
39.3 Specifically Quantum Attributes of Brackets 479
39.4 The Groenewold–Van Hove Phenomenon ... 480
39.5 Examples of Kinematical Quantization .. 481
39.6 ii. Further Global Nontriviality ... 487
39.7 Conceptual Outline of the Kochen–Specker Theorem 487

40 Geometrical Quantization. ii. Dynamical Quantization 489
40.1 Operator Ordering .. 489
40.2 Quantum Wave Equations .. 491
40.3 Addendum: \mathfrak{q}-Primality at the Quantum Level 492
41 Further Detail of Time and Temporal Relationalism in Quantum Theory 493
 41.1 Time in Quantum Theory Revisited ... 493
 41.2 The Quantum Frozen Formalism Problem 494
 41.3 Temporal Relationalism Implementing Canonical Quantum Theory (TRiCQT) 495
 41.4 Do Absolute and Relational Mechanics Give Distinct QM? 495
 41.5 Inner Product and Adjointness Issues 498

42 Geometrical Quantization with Nontrivial \mathfrak{g}. i. Finite Theories .. 501
 42.1 Configurational Relationalism at the Quantum Level 501
 42.2 Dirac Quantization of Finite Models .. 502
 42.3 Reduced Quantization of Finite Models 504
 42.4 Three More Operator Ordering Problems 509

43 Geometrical Quantization with Nontrivial \mathfrak{g}. ii. Field Theories and GR 511
 43.1 Further QFT Subtleties ... 511
 43.2 Unconstrained Examples .. 512
 43.3 Dirac Quantization of Geometrodynamics.
 i. Kinematical Quantization ... 512
 43.4 ii. Dynamical Quantization .. 514
 43.5 Dirac-Type Quantization of Nododynamics Alias LQG 516
 43.6 Dirac Quantization of Super-RPM and Supergravity 518
 43.7 Is Quantization Is a Functorial Prescription? 519

44 Tempus Ante Quantum ... 521
 44.1 Finite \mathfrak{g}-Free Models ... 521
 44.2 Nontrivial \mathfrak{g} Models .. 522
 44.3 Problems with These Approaches .. 523

45 Tempus Post Quantum. i. Paralleling QFT .. 527
 45.1 Attempting a Schrödinger Inner Product 527
 45.2 Attempting a Klein-Gordon Inner Product Based on Riem Time 527
 45.3 ‘Third Quantization’ Generalized and Renamed 528
 45.4 Problem of Time Strategies in Affine Geometrodynamics 529

46 Tempus Post Quantum. ii. Semiclassical Machian Emergent Time 531
 46.1 Born–Oppenheimer Scheme ... 532
 46.2 Discussion of Adiabatic Approximations 533
 46.3 WKB Scheme ... 534
 46.4 Scale–Shape Split h- and l-Equations 534
 46.5 Semiclassical WKB Emergent Time ... 534
 46.6 l-Time-Dependent Schrödinger Equation 536
 46.7 Rectified Time and Its Relation to Shape Space 536
 46.8 The WKB Assumption Is Crucial but Unjustified 537
47 Tempus Post Quantum. iii. Semiclassical Quantum Cosmological Modelling .. 539
 47.1 Back-Reaction, Higher Derivative, and Expectation Terms 539
 47.2 Solving the h-Equation for Emergent Machian Time 541
 47.3 Some l-Time-Dependent Schrödinger Equation Regimes 543
 47.4 Dirac-Quantized Semiclassical Schemes 544
 47.5 Extension Including Fermions 546
 47.6 Variational Methods for Quantum Cosmology 546
 47.7 Perturbative Schemes .. 549
 47.8 Problems .. 549

48 Semiclassicality and Quantum Cosmology: Interpretative Issues . 551
 48.1 Coherent States .. 551
 48.2 Wigner Functionals ... 551
 48.3 Decoherence .. 552
 48.4 Environments ... 553
 48.5 Is Physics only About Subsystems? 553

49 Quantum Constraint Closure ... 555
 49.1 Split Quantum Constraint Structures and Nontrivial \mathcal{G} . 556
 49.2 (Counter)Examples of Quantum Constraint Closure 557
 49.3 Anomalies .. 558
 49.4 Strategies for Dealing with Quantum Constraint Closure Problem . 559
 49.5 Quantum Implications of Constraints Closing as Algebroids .. 560
 49.6 The Semiclassical Case .. 560
 49.7 Is There a Quantum Dirac-Type Algorithm? 561

50 Quantum Beables or Observables 563
 50.1 Types of Constrained Quantum Beables 563
 50.2 Indirect Constructions for Quantum Dirac Beables D 565
 50.3 Quantum-Level Problem of Beables 565
 50.4 Beables Motivated from Realist Interpretations 567

51 Fully Timeless Approaches at the Quantum Level 569
 51.1 Quantum-Level Propositions 569
 51.2 Conditional Probabilities 572
 51.3 Timeless Records Theories 575
 51.4 Records Approaches with More than Just Timeless Structure .. 578

52 Spacetime Primary Approaches: Path Integrals 579
 52.1 Unconstrained Models ... 579
 52.2 Path Integrals in Gauge Theory 579
 52.3 Strategies for GR Path Integrals 580
 52.4 Temporal Relationalism Implementing Path Integral Quantum Theory (TRiPIQT) .. 583
 52.5 Canonical-and-Path-Integral Approaches 584
53 Histories Theory at the Quantum Level

- 53.1 Gell-Mann–Hartle-Type Histories Theory .. 585
- 53.2 Histories Projection Operator (HPO) Approach 586
- 53.3 Computation of Decoherence Functionals .. 587
- 53.4 Further Theories, Structures and Problems ... 588
- 53.5 TRi Quantum Histories Theory .. 589
- 53.6 Further Examples of Histories Formulations 590
- 53.7 Records Within Quantum Histories Theory ... 594

54 Combined Histories-Records-Semiclassical Approach

- 54.1 g-Free Models Without Machian Emergence 598
- 54.2 Machian Time Version Sitting Within Semiclassical Approach 601
- 54.3 Combined Approach for g-Nontrivial Theories 602
- 54.4 Construction of Quantum Dirac Beables from Quantum Kuchař Beables .. 603
- 54.5 Frontiers of Research ... 604

55 Quantum Foliation Independence Strategies

- 55.1 Constraint Algebraic Structure’s Ties to Other Facets 607
- 55.2 Semiclassical Refoliation Invariance? .. 607
- 55.3 Suitable Model Arenas for Quantum Foliation Issues 608
- 55.4 Foliation Problems at the Quantum Level ... 609

56 Quantum Spacetime Construction Strategies

- 56.1 Semiclassical Spacetime Construction .. 611
- 56.2 Spacetime Construction in Histories Theory .. 612

57 Quantum-Level Conclusion

- 57.1 The First Four Facets ... 613
- 57.2 Spacetime, Timeless, Histories and Combined Approaches 616
- 57.3 State of Completion in Model Arenas .. 617
- 57.4 Research Frontiers ... 617

58 Epilogue III.A. The Multiple Choice Problem

- 58.1 Multiple Choice Problems .. 621
- 58.2 Strategies for the Multiple Choice Problems ... 622
- 58.3 Specific Model Arenas .. 623

59 Epilogue III.B. Quantum Global Problems of Time

- 59.1 Extending Classification of Global Problems of Time 625
- 59.2 Semiclassical Approach ... 626
- 59.3 Hidden Time Approaches ... 626
- 59.4 Basic Monopole and Gribov Effects at the Quantum Level 627
- 59.5 Quantum Issues Following from Stratification 627
- 59.6 Constraint Closure .. 628
- 59.7 Observables and Beables ... 629
- 59.8 Timeless Approaches ... 630
- 59.9 Paths and Histories Approaches .. 630
59.10 Combined Approach .. 631
59.11 Refoliation Invariance and Spacetime Construction 632

60 Epilogue III.C. Deeper Levels’ Quantum Background
Independence and Problem of Time 635
60.1 Topological Manifold Level Considerations 636
60.2 Metric and Topological Space Level 637
60.3 Yet Deeper Levels of Structure 638
60.4 Situations with Negligible Deeper Levels of Structure 639
60.5 Records and Histories 639
60.6 Quantum Theory, Categories and Topoi 640
60.7 Multiple Choice Problem Revisited 641
60.8 Background Independence, Categories and Topoi 642

Appendices: Mathematical Methods for Basic and Foundational
Quantum Gravity

Appendix A Basic Algebra and Discrete Mathematics 647
A.1 Sets and Relations 647
A.2 Groups ... 649
A.3 Linear Algebra. i. Fields and Vector Spaces 650
A.4 ii. Rings and Modules* 653
A.5 Representation Theory 653
A.6 Graphs and Generalizations 653

Appendix B Flat Geometry 655
B.1 Real Geometry ... 655
B.2 Minkowski Spacetime Geometries 659
B.3 Complex Transformations and Geometries 659

Appendix C Basic Analysis 661
C.1 Real Analysis .. 661
C.2 Basic Functional Analysis 663
C.3 Complex Analysis* 664
C.4 Metric Spaces ... 664
C.5 Inverse and Implicit Function Theorems* 664
C.6 Topological Spaces 665

Appendix D Manifold Geometry 667
D.1 Topological Manifolds 667
D.2 Differentiable Manifolds 669
D.3 Affine Differential Geometry 672
D.4 (Semi)Riemannian Manifolds 675
D.5 Some More General Metric Geometries* 677
D.6 Integration on Manifolds 678
D.7 Conformal Transformations, Metrics and Geometry 678
D.8 Exercises III. Basic Mathematics and Geometry 680
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>J.8</td>
<td>Further Auxiliary Spaces*</td>
<td>744</td>
</tr>
<tr>
<td>J.9</td>
<td>Corresponding Morphisms</td>
<td>744</td>
</tr>
<tr>
<td>J.10</td>
<td>Morphisms for the (Anti-)Routhian*</td>
<td>745</td>
</tr>
<tr>
<td>J.11</td>
<td>Poisson Brackets</td>
<td>746</td>
</tr>
<tr>
<td>J.12</td>
<td>Poisson Manifolds*</td>
<td>746</td>
</tr>
<tr>
<td>J.13</td>
<td>Peierls Bracket*</td>
<td>747</td>
</tr>
<tr>
<td>J.14</td>
<td>Hamilton–Jacobi Theory</td>
<td>748</td>
</tr>
<tr>
<td>J.15</td>
<td>Hamiltonian Formulation for Constrained Systems</td>
<td>752</td>
</tr>
<tr>
<td>J.16</td>
<td>(Anti-)Routhian Analogue of the Legendre Matrix*</td>
<td>753</td>
</tr>
<tr>
<td>J.17</td>
<td>Symplectic Treatment of Constrained Systems*</td>
<td>753</td>
</tr>
<tr>
<td>J.18</td>
<td>Constraint and Beables Algebraic Structures*</td>
<td>755</td>
</tr>
<tr>
<td>J.20</td>
<td>Classical Brackets Extended to Include Fermions*</td>
<td>755</td>
</tr>
</tbody>
</table>

Appendix K The Standard Principles of Dynamics. ii. Field Theory 757
K.1	Classification of Field-Theoretic Versions of the Principles of Dynamics	757
K.2	SR Spacetime Version	757
K.3	Space–Time Split SR Version	758
K.4	Curved Spacetime and GR Versions	760
K.5	Space–Time Split GR Version	761

Appendix L Temporal Relationalism Implementing Principles of Dynamics (TRiPoD)* 763
L.1	Finite-Field Theoretic Portmanteau Notation	763
L.2	Jacobi–Mach Formulation	763
L.3	Free End Notion of Space Variation	765
L.4	TRi Legendre Transformation	766
L.5	TRi-Morphisms and Brackets, i	767
L.6	ΔA-Hamiltonians and Phase Spaces, and TRi Dirac-Type Algorithms	767
L.7	TRi-Morphisms and Brackets, ii)	770
L.8	TRi Constraint Algebraic Structures and Beables	770
L.9	TRi Hamilton–Jacobi Theory	770
L.10	TRiPoD End-Summary	771
L.11	Parageodesic Principle Split Conformal Transformations	771

Appendix M Quotient Spaces and Stratified Manifolds** 775
M.1	Quotienting out Groups: Further Useful Notions	775
M.2	Quotient Topologies	775
M.3	Orbifolds	776
M.4	Quotienting by Lie Group Action, and Slices	777
M.5	Stratified Manifolds	777
M.6	Locally Compact Hausdorff Second-Countable (LCHS) Spaces	780
M.7	Differential Spaces and Stratifolds	780
M.8	Further Stratified Spaces from the Principles of Dynamics	780
Appendix N Reduced Configuration Spaces for Field Theory and GR**

N.1	Gauge Group Orbit Spaces	781
N.2	Loops and Loop Spaces for Gauge Theory	782
N.3	Topology of \(g = \text{Diff}(\Sigma) \)	782
N.4	Topology of Superspace(\(\Sigma \))	783
N.5	Comparison Between Theories. i. Theorems	784
N.6	ii. Handling Dynamical Trajectories Exiting a Stratum	785
N.7	\(\mathfrak{g}(\Sigma) \) and \(\{\mathfrak{g} + V\}(\Sigma) \)	786
N.8	Notions of Distance for Geometrodynamics	787
N.9	Modelling with Infinite-\(d \) Stratifolds	788
N.10	Reduced Treatment of Slightly Inhomogeneous Cosmology	788
N.11	Further Configuration Spaces	790
N.12	Loops and Loop Spaces	790
N.13	Knots and Knotspace	791

Appendix O DE Theorems for Geometrodynamics’ Problem of Time*

O.1	Types of Global Issues	793
O.2	ODEs	794
O.3	First-Order PDEs	795
O.4	Second-Order PDEs	795
O.5	GR Initial Value Problem Theorems. i. Thin Sandwich Approach	796
O.6	ii. Conformal Approach	797
O.7	Theorems for the GR Cauchy Problem	797
O.8	Basic FDE Theory for GR and QFT	798

Appendix P Function Spaces, Measures and Probabilities

P.1	Basic Formulation of Probability	801
P.2	Measure Theory*	803
P.3	More Advanced Formulation of Probability*	804
P.4	Distributions (in the Sense of Functional Analysis)*	805
P.5	Further Useful Function Spaces*	805

Appendix Q Statistical Mechanics (SM), Information, Correlation

Q.1	Thermodynamics	807
Q.2	Thermodynamics for GR More Generally*	808
Q.3	Spaces of Substates*	809
Q.4	Imperfect Knowledge of a (Sub)system*	809
Q.5	Classical Statistical Mechanics (SM)	810
Q.6	Fine- and Coarse-Graining	811
Q.7	Classical Microscopic Notions of Entropy	813
Q.8	Classical Notions of Information*	813
Q.9	Classical Notions of Correlation*	814

Appendix R Stochastic Geometry*

| R.1 | Metric Shape Statistics | 817 |
| R.2 | Stratified Manifold Version** | 819 |
Appendix S Deeper Levels. i. Generalized Configuration Spaces** 821
 S.1 Spaces of Differentiable Structures 821
 S.2 Spaces of Topological Manifolds 821
 S.3 Spaces of Metric Spaces 823
 S.4 Lattices 824
 S.5 Spaces of Subgroups, Topological Spaces and Collections 825
 S.6 Spaces of Sets? 826

Appendix T Deeper Levels. ii. Grainings, Information, Stochastics and Statistics** 827
 T.1 Grainings 827
 T.2 Notions of Information or Entropy 827
 T.3 Stochastic and Statistical Treatment.
 i. Topological Manifold Level 828
 T.4 ii. Topological Space Level 828
 T.5 iii. Set and Collection of Subsets Levels 828

Appendix U Quantum SM, Information and Correlation* 829
 U.1 Mixed States 829
 U.2 Quantum Grainings 830
 U.3 Quantum Versus Standard Probability Theory 830
 U.4 Quantum SM 831
 U.5 Quantum Notions of Entropy and Information 832
 U.6 Quantum Correlations 832

Appendix V Further Algebraic Structures* 835
 V.1 Reps. i. Semidirect Product Groups in General 835
 V.2 ii. Super-Poincaré Groups 836
 V.3 iii. Diffeomorphism Groups 836
 V.4 iv. Super-diffeomorphism Groups 837
 V.5 v. For Kinematical Quantization of GR 837
 V.6 Algebroids and Their Reps 837
 V.7 Operator Algebras 838

Appendix W Alternative Foundations for Mathematics** 841
 W.1 Categories 841
 W.2 Presheaves 843
 W.3 Sheaves 843
 W.4 Topoi 846

Appendix X Outline of Notation 849
 X.1 For Part I and Unstarred Appendices 849
 X.2 Additional Notation for Parts II and III, and Starred Appendices 850

References 851

Index 885
The Problem of Time
Quantum Mechanics Versus General Relativity
Anderson, E.
2017, XXXVIII, 920 p. 172 illus., 66 illus. in color., Hardcover
ISBN: 978-3-319-58846-9