Contents

Part I Time in Fundamental Physics

1 **Introduction: Conceptual Outline of Time**
 1.1 Time-Related Notions
 1.2 Space-Related Notions Make for Useful Comparison
 1.3 Physical Limitations on Intuitive Notions of Time and Space
 1.4 Events
 1.5 Philosophical Worldviews of Time
 1.6 Some Properties Attributed to Time
 1.7 Continuum Mathematics Models for Time
 1.8 Some Basic Properties of Timefunctions
 1.9 Non-continuum Modelling of Time
 1.10 Mathematical Modelling of Space
 1.11 Advent of Notions of Spacetime
 1.12 ‘Measuring Time’: Extra Connotations in the Word ‘Clock’
 1.13 Measuring Length

2 **Time, Space and Laws in Newtonian Mechanics**
 2.1 Newton’s Laws of Mechanics
 2.2 Impact of Newtonian Mechanics
 2.3 Newtonian Absolute Space
 2.4 Newtonian Absolute Time
 2.5 Aristotelian, Galilean and Newtonian Paradigms Compared
 2.6 Newton’s Bucket
 2.7 Newtonian Gravity
 2.8 Electrostatics
 2.9 Gravitation and Electrostatics Compared
 2.10 Magnetostatics
 2.11 Light Flashes
 2.12 Cartesian and Curvilinear Tensors Within the Newtonian Paradigm
 2.13 Principles of Dynamics (PoD) formulations of Mechanics
<table>
<thead>
<tr>
<th>3</th>
<th>Absolute Versus Relational Motion Debate</th>
<th>33</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Two Centuries of Critique of the Newtonian Paradigm</td>
<td>33</td>
</tr>
<tr>
<td>3.2</td>
<td>Concrete Example of Relational Particle Mechanics (RPM)</td>
<td>36</td>
</tr>
<tr>
<td>3.3</td>
<td>Ephemeris Time as a Realization of Mach’s Time Principle</td>
<td>36</td>
</tr>
<tr>
<td>3.4</td>
<td>Universality of Relational Thinking</td>
<td>37</td>
</tr>
<tr>
<td>3.5</td>
<td>Electromagnetic Unification and the Luminiferous Aether</td>
<td>37</td>
</tr>
<tr>
<td>4</td>
<td>Time, Space, Spacetime and Laws in Special Relativity</td>
<td>41</td>
</tr>
<tr>
<td>4.1</td>
<td>Special Relativity (SR)</td>
<td>41</td>
</tr>
<tr>
<td>4.2</td>
<td>Invariant Interval, Indefinite Metric and Proper Time</td>
<td>42</td>
</tr>
<tr>
<td>4.3</td>
<td>Minkowski Spacetime’s Geometrical Structure and Its Physical Meaning</td>
<td>44</td>
</tr>
<tr>
<td>4.4</td>
<td>Lorentzian Tensors (Alias 4-Tensors)</td>
<td>47</td>
</tr>
<tr>
<td>4.5</td>
<td>Minkowskian Paradigm of Physics</td>
<td>47</td>
</tr>
<tr>
<td>4.6</td>
<td>More on Time and Spacetime in the Minkowskian Paradigm</td>
<td>48</td>
</tr>
<tr>
<td>4.7</td>
<td>More on SR Clocks</td>
<td>50</td>
</tr>
<tr>
<td>4.8</td>
<td>Length Measurement in SR</td>
<td>51</td>
</tr>
<tr>
<td>4.9</td>
<td>Einstein’s Eventual Opinion on the Theoretical Status of Clocks and Rods</td>
<td>51</td>
</tr>
<tr>
<td>4.10</td>
<td>Exercises I. Time in Mechanics and SR</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Time and Ordinary Quantum Mechanics (QM)</td>
<td>55</td>
</tr>
<tr>
<td>5.1</td>
<td>A Simple Axiomatization of QM</td>
<td>55</td>
</tr>
<tr>
<td>5.2</td>
<td>Experimental Support for QM and Examples</td>
<td>59</td>
</tr>
<tr>
<td>5.3</td>
<td>Time in Nonrelativistic QM</td>
<td>60</td>
</tr>
<tr>
<td>5.4</td>
<td>Clocks in QM</td>
<td>62</td>
</tr>
<tr>
<td>5.5</td>
<td>Advent of Atomic Clocks</td>
<td>63</td>
</tr>
<tr>
<td>5.6</td>
<td>Quantum Inputs to Measuring Lengths and Masses</td>
<td>64</td>
</tr>
<tr>
<td>6</td>
<td>Quantum Field Theory (QFT)</td>
<td>65</td>
</tr>
<tr>
<td>6.1</td>
<td>Free Spin-0 Field</td>
<td>65</td>
</tr>
<tr>
<td>6.2</td>
<td>Free Spin-½ Field</td>
<td>67</td>
</tr>
<tr>
<td>6.3</td>
<td>Free Spin-1 Field: Electromagnetism, and Its Gauge Symmetry</td>
<td>68</td>
</tr>
<tr>
<td>6.4</td>
<td>Time in Quantum SR</td>
<td>70</td>
</tr>
<tr>
<td>6.5</td>
<td>Interacting Field Theories, Including Quantum Electrodynamics (QED)</td>
<td>71</td>
</tr>
<tr>
<td>6.6</td>
<td>Yang–Mills Theory Underlying the Nuclear Forces</td>
<td>73</td>
</tr>
<tr>
<td>6.7</td>
<td>Discrete Operations (Including Time-Reversal) in Quantum SR</td>
<td>75</td>
</tr>
<tr>
<td>6.8</td>
<td>Quantum-Level Evidence for SR</td>
<td>76</td>
</tr>
<tr>
<td>6.9</td>
<td>Grand Unified Theories</td>
<td>76</td>
</tr>
<tr>
<td>6.10</td>
<td>Exercises II. Time and Quantum Theory</td>
<td>76</td>
</tr>
<tr>
<td>7</td>
<td>Time and Spacetime in General Relativity (GR)</td>
<td>79</td>
</tr>
<tr>
<td>7.1</td>
<td>More Systematic Formulation of GR’s Mathematics</td>
<td>83</td>
</tr>
<tr>
<td>7.2</td>
<td>Spacetime Action Principle for GR</td>
<td>84</td>
</tr>
<tr>
<td>7.3</td>
<td>Black Holes</td>
<td>85</td>
</tr>
<tr>
<td>7.4</td>
<td>Cosmology</td>
<td>88</td>
</tr>
</tbody>
</table>
7.5 Evidence for GR .. 89
7.6 Notions of Time in the Spacetime Formulation of GR ... 91
7.7 GR Issues with Clocks 92
7.8 Observers and Length Measurement in GR 93
7.9 GR’s Singularity Theorems 94

8 Dynamical Formulations of GR 95
8.1 Topological Manifold Level Structure 95
8.2 Differential Geometry Level Structure 96
8.3 Metric Level Structure 97
8.4 Single-Hypersurface Concepts 97
8.5 Two-Hypersurface and Foliation Concepts 100
8.6 Foliations in Terms of Fleets of Possible Observers ... 102
8.7 Completion of the Curvature Projection Equations 104
8.8 A Further Type of Diffeomorphism: $\text{Diff}(\mathbb{M}, \mathfrak{F}_{ol})$ 104
8.9 Space–Time Split of the GR Action 104
8.10 The GR Action Equips $\mathfrak{Riem}(\Sigma)$ with a Metric Geometry 105
8.11 GR’s Momenta ... 106
8.12 GR’s Constraints 106
8.13 GR’s Evolution Equations 107
8.14 Other Classical Applications of Geometrodynamics 108
8.15 Outline of Ashtekar Variables Alternative 109
8.16 Exercises V. Spacetime and Dynamical Formulations of GR . 110

9 Classical-Level Background Independence and the Problem
of Time. i. Time and Configuration 115
9.1 Many Routes to GR 118
9.2 Dynamics in the Great Tradition 118
9.3 Spacetime Versus ‘Space or Configuration Space’ 119
9.4 Configuration Spaces \mathcal{Q} 119
9.5 Configuration Spaces as Starting Point for Dynamics 121
9.6 Constraints Are All Versus Constraint Providers 121
9.7 Background Independence Aspect 1: Temporal Relationalism 122
9.8 Aspect 2: Configurational Relationalism 125
9.9 Minisuperspace Model Arena Version 129
9.10 Temporal and Configurational Relationalism Lead to Two
of the Problem of Time Facets 130
9.11 Other Timefunction-Based Problem of Time Strategies ... 131
9.12 Fully Timeless Strategies 133
9.13 Providers, Algebraic Structure, and Beables 133
9.14 Aspect 3: Constraint Closure 134
9.15 Aspect 4: Assignment of Beables 137

10 Classical-Level Background Independence and the Problem
of Time. ii. Spacetime and Its Interrelation with Space 141
10.1 Aspect 5: Spacetime Relationalism 141
10.2 Closure of $\text{Diff}(\mathcal{M})$.. 142
10.3 Further Detail of This Book’s Concepts and Terminology 142
10.4 Spacetime Observables ... 144
10.5 Classical-Level Background Metrics 145
10.6 Paths and Histories Strategies 145
10.7 Web of Classical Problem of Time Strategies 146
10.8 Aspect 6: Foliation Independence 146
10.9 Aspect 7: Spacetime Constructability 147
10.10 Model Arenas, Diffeomorphisms and Slightly Inhomogeneous Cosmology ... 149
10.11 Summary so Far: Seven Gates 150
10.12 Frontiers .. 150

11 Quantum Gravity Programs 157
11.1 Basic Considerations .. 157
11.2 Covariant Approach to Quantum Gravity 160
11.3 Quantum Field Theory in Curved Spacetime (QFTiCS) 163
11.4 Canonical Quantum Wave Equations 166
11.5 Quantum Cosmology .. 167
11.6 Path Integral Approach for Gravitational Theories 168
11.7 Covariant Approaches to Alternative Theories 169
11.8 Perturbative String Theory 172
11.9 Ashtekar Variables and Loop Quantum Gravity 175
11.10 Canonical Approach to Supergravity 176
11.11 Brane, Null Line, and Relational Alternatives 177
11.12 M-Theory ... 178
11.13 Conclusion: A Family Tree Overview 179

12 Quantum-Level Background Independence and the Problem of Time ... 181
12.1 Quantum Frozen Formalism Problem 181
12.2 Timefunction-Based Strategies for Frozenness 182
12.3 Quantum Configurational Relationalism 185
12.4 Quantum Constraint Closure 185
12.5 Quantum Assignment of Beables 187
12.6 Quantum-Level Timeless Approaches 187
12.7 Quantum Spacetime Relationalism 188
12.8 Path Integral Approaches 189
12.9 Consistent Histories Approaches 190
12.10 Web of Quantum Problem of Time Strategies 191
12.11 Quantum Foliation Independence: Aspect 6) 191
12.12 Quantum Spacetime Constructability 191
12.13 Summary of a Local Problem of Time 193
12.14 Aspect 8: Global Validity 194
12.15 Aspect 9: No Unexplained Multiplicities 194
12.16 Conclusion. i. Summary Figures 195
18. Configurational Relationalism Including Fields

- 18.2 Configurational Relationalism Including Fields 248
- 18.3 Example 1) Electromagnetism Alone 251
- 18.4 Example 2) GR .. 251
- 18.5 Baierlein–Sharp–Wheeler Action and the Thin Sandwich 252
- 18.6 The Thin Sandwich Problem 253
- 18.7 Reparametrization-Invariant Relational Action for GR 253
- 18.8 Geometrical Action for GR 253
- 18.9 TRi Form of the Thin Sandwich 254
- 18.10 Comments on GR’s Emergent Machian Time 255
- 18.11 Example 3) GR with Fundamental Matter Fields 257
- 18.12 Example 4) Strong Gravity 259

19. Relationalism in Various Further Settings

- 19.1 Multiple Distinct Uses of the Word ‘Relational’ 261
- 19.2 Well-Known Theoretical Variants in Upper Layers
of Mathematical Structure ... 262
- 19.3 Relationalism and Affine Geometry 262
- 19.4 Relationalism and Conformal Geometry 263
- 19.5 Relationalism and the Point at Infinity 264
- 19.6 The Fermionic Selection Criterion 264
- 19.7 Relationalism in Ashtekar Variables Formulation of GR 265
- 19.8 Relationalism and Supersymmetry 267
- 19.9 Supersymmetric, Conformal and Affine Combinations 269
- 19.10 String and M-Theory Versus Relationalism 269

20. Other Tempus Ante Quantum Approaches

- 20.1 The Ante Postulate ... 271
- 20.2 Riem Time’s Hyperbolic Implementation 271
- 20.3 Scale Factor, Cosmic and Conformal Times 273
- 20.4 Parabolic and Part-Linear Implementations 274
- 20.5 Hidden Time Approaches 274
- 20.6 Implementation by Unhidden Time 275

21. Conformal Approach and Its York Time

- 21.1 Trace-Tracefree Irreducible Tensor Split 277
- 21.2 Maximal and CMC Slices, and Conformal Scaling 277
- 21.3 Model Arenas .. 278
- 21.4 Underlying Conformal Configuration Spaces 279
- 21.5 Canonical Twist and Definition of York and Euler Times 281
- 21.6 Dilational Time for Nontrivial \(\mathcal{G} \) 283
- 21.7 Monotonicity of Dilational Times 285

22. Matter Times

- 22.1 Straightforward Matter Time 287
- 22.2 Reference-Fluid Matter Time 287
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Spacetime Relationalism</td>
<td>347</td>
</tr>
<tr>
<td>27.1</td>
<td>Implementation of Spacetime Relationalism</td>
<td>347</td>
</tr>
<tr>
<td>27.2</td>
<td>$\text{Diff}(\mathcal{M})$’s Brackets and Algebraic Structure</td>
<td>348</td>
</tr>
<tr>
<td>27.3</td>
<td>The Space of Spacetimes and of GR Solutions</td>
<td>348</td>
</tr>
<tr>
<td>27.4</td>
<td>The Path (Via) Alternative</td>
<td>349</td>
</tr>
<tr>
<td>27.5</td>
<td>Spacetime Observables</td>
<td>349</td>
</tr>
<tr>
<td>27.6</td>
<td>Use $\text{Diff}(\mathcal{M})$ or Some Larger Group?</td>
<td>350</td>
</tr>
<tr>
<td>27.7</td>
<td>Relationalism as Alternative Route to Physical Theories</td>
<td>351</td>
</tr>
<tr>
<td>27.8</td>
<td>Contrast Between Spacetime and Temporal and Configurational Relationalisms</td>
<td>352</td>
</tr>
<tr>
<td>28</td>
<td>Classical Histories Theory</td>
<td>355</td>
</tr>
<tr>
<td>28.1</td>
<td>\mathcal{G}-Free Case</td>
<td>355</td>
</tr>
<tr>
<td>28.2</td>
<td>\mathcal{G}-Nontrivial Classical Histories</td>
<td>357</td>
</tr>
<tr>
<td>28.3</td>
<td>Classical Histories Constraint Closure and Beables</td>
<td>357</td>
</tr>
<tr>
<td>29</td>
<td>Classical Machian Combined Approach</td>
<td>359</td>
</tr>
<tr>
<td>29.1</td>
<td>Classical Machian Histories</td>
<td>359</td>
</tr>
<tr>
<td>29.2</td>
<td>Records Within Classical Histories Theory</td>
<td>361</td>
</tr>
<tr>
<td>29.3</td>
<td>Beables in the Combined Approach</td>
<td>363</td>
</tr>
<tr>
<td>30</td>
<td>Slightly Inhomogeneous Cosmology (SIC)</td>
<td>365</td>
</tr>
<tr>
<td>30.1</td>
<td>Relational Action for SIC</td>
<td>365</td>
</tr>
<tr>
<td>30.2</td>
<td>Constraints for SIC</td>
<td>367</td>
</tr>
<tr>
<td>30.3</td>
<td>Constraint Closure Posed</td>
<td>368</td>
</tr>
<tr>
<td>30.4</td>
<td>Outcome of Dirac Algorithm and Thin Sandwich</td>
<td>370</td>
</tr>
<tr>
<td>30.5</td>
<td>Beables for SIC</td>
<td>374</td>
</tr>
<tr>
<td>30.6</td>
<td>The Averaging Problem in GR</td>
<td>376</td>
</tr>
<tr>
<td>30.7</td>
<td>SIC Records</td>
<td>376</td>
</tr>
<tr>
<td>30.8</td>
<td>SIC Histories</td>
<td>376</td>
</tr>
<tr>
<td>30.9</td>
<td>Summary of the Model Arenas</td>
<td>377</td>
</tr>
<tr>
<td>30.10</td>
<td>Frontiers of Research</td>
<td>377</td>
</tr>
<tr>
<td>31</td>
<td>Embeddings, Slices and Foliations</td>
<td>379</td>
</tr>
<tr>
<td>31.1</td>
<td>Single-Slice Concepts. i. Topological and Differentiable Manifold Levels</td>
<td>379</td>
</tr>
<tr>
<td>31.2</td>
<td>ii. Metric Level</td>
<td>380</td>
</tr>
<tr>
<td>31.3</td>
<td>More General Examples</td>
<td>382</td>
</tr>
<tr>
<td>31.4</td>
<td>Spaces of Embeddings and of Slices</td>
<td>382</td>
</tr>
<tr>
<td>31.5</td>
<td>Foliation in Terms of a Decorated Chart</td>
<td>383</td>
</tr>
<tr>
<td>31.6</td>
<td>ADM Kinematics for Foliations</td>
<td>383</td>
</tr>
<tr>
<td>31.7</td>
<td>Spaces of Foliations</td>
<td>386</td>
</tr>
<tr>
<td>31.8</td>
<td>Refoliation Invariance</td>
<td>386</td>
</tr>
<tr>
<td>31.9</td>
<td>Bubble Time and Its Dual: Many-Fingered Time</td>
<td>386</td>
</tr>
<tr>
<td>31.10</td>
<td>Issues Involving Specific Foliations</td>
<td>387</td>
</tr>
<tr>
<td>31.11</td>
<td>Various Other Arenas’ (Lack of) Foliation Concepts</td>
<td>388</td>
</tr>
</tbody>
</table>
32 Applications of Split Spacetime, Foliations and Deformations

32.1 Deformation Approach to Geometrodynamics

32.2 Universal Kinematics for Hypersurfaces in Spacetime (ADM Split Version)

32.3 Thin Sandwich Completion in Terms of Hypersurface Kinematics

32.4 Space–Time Split Account of Observables or Beables

32.5 Difference Between Hamiltonians and Gauge Generators

32.6 ‘Nothing Happens’ Fallacy

32.7 Discussion

32.8 Foliation Considerations and Unimodular Approach to Problem of Time

32.9 Spacetime to Foliations to Internal Time

32.10 Covariant-and-Canonical Histories Theory

33 Spacetime Construction and Alternative Emergent Structures

33.1 Relational First Principles Ansatz for Geometrodynamical Theories

33.2 Geometrodynamical Consistency, Local Relativity and Spacetime Construction

33.3 Strongly Vanishing Options: GR, Strong Gravity, Geometrostatics

33.4 Family Ansatz for Addition of Minimally-Coupled Matter

33.5 The 3 Strong Obstruction Factors as Relativities

33.6 The Fourth Weakly-Vanishing Factor

33.7 Discover-and-Encode Approach to Physics

33.8 Conformogeometrodynamics Assumed

33.9 Simpler Cases of Spacetime Constructability

33.10 Caveats on Further Matter Results

34 TRi Foliation (TRiFol)

34.1 TRi-Split Version of Geometrodynamics

34.2 TRiFol Itself

34.3 Many-Fingered and Bubble Times, and Deformation First Principles

34.4 Machian Hypersurface Kinematics

34.5 Machian Thin Sandwich Completion

34.6 TRi Refoliation Invariance

35 Classical-Level Conclusion

35.1 Classical Machian Emergent Time Approach

35.2 Denizens of Each Problem of Time Facet

35.3 Interferences Between Classical Problem of Time Facets

35.4 ii. Supporting Model Arenas

35.5 iii. Further Facets in the Case of GR

35.6 Further Orders of Passage Through the Problem of Time’s ‘Gates’

35.7 Ties Between Time and Other Concepts
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Subtitle</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36 Epilogue II.A.</td>
<td>Threading and Null Formulations</td>
<td>Threading Formulation</td>
<td>439</td>
</tr>
<tr>
<td>36.1</td>
<td>The $1 + 3$ Threading Formulation</td>
<td></td>
<td>439</td>
</tr>
<tr>
<td>36.2</td>
<td>Characteristic, $2 + 2$ and Twistor Formulations</td>
<td></td>
<td>440</td>
</tr>
<tr>
<td>36.3</td>
<td>Summary and Machian Evaluation</td>
<td></td>
<td>441</td>
</tr>
<tr>
<td>37 Epilogue II.B.</td>
<td>Global Validity and Global Problems of Time</td>
<td>Classical Emergent Machian Time</td>
<td>443</td>
</tr>
<tr>
<td>37.1</td>
<td></td>
<td></td>
<td>444</td>
</tr>
<tr>
<td>37.2</td>
<td>Scale Times</td>
<td></td>
<td>447</td>
</tr>
<tr>
<td>37.3</td>
<td>\mathfrak{g} Nontrivial. i. Monopoles in Configuration Space</td>
<td></td>
<td>447</td>
</tr>
<tr>
<td>37.4</td>
<td>ii. Gribov Phenomena</td>
<td></td>
<td>448</td>
</tr>
<tr>
<td>37.5</td>
<td>iii. Stratification and Its Consequences</td>
<td></td>
<td>449</td>
</tr>
<tr>
<td>37.6</td>
<td>iv. Sheaf Methods</td>
<td></td>
<td>452</td>
</tr>
<tr>
<td>37.7</td>
<td>Brackets and Constraint Closure</td>
<td></td>
<td>453</td>
</tr>
<tr>
<td>37.8</td>
<td>Problem of Beables</td>
<td></td>
<td>454</td>
</tr>
<tr>
<td>37.9</td>
<td>Timeless Approaches</td>
<td></td>
<td>455</td>
</tr>
<tr>
<td>37.10</td>
<td>Spacetime Relationalism</td>
<td></td>
<td>455</td>
</tr>
<tr>
<td>37.11</td>
<td>Histories Theory</td>
<td></td>
<td>456</td>
</tr>
<tr>
<td>37.12</td>
<td>Combined Approach</td>
<td></td>
<td>456</td>
</tr>
<tr>
<td>37.13</td>
<td>Space–Time Split, Foliations and Refoliation Invariance</td>
<td></td>
<td>457</td>
</tr>
<tr>
<td>37.14</td>
<td>Spacetime Constructability</td>
<td></td>
<td>458</td>
</tr>
<tr>
<td>38 Epilogue II.C.</td>
<td>Background Independence and Problem of Time at Deeper Levels of Structure</td>
<td>Time, Background Independence and Problem of Time upon Descent. i. Persistent Features</td>
<td>461</td>
</tr>
<tr>
<td>38.1</td>
<td></td>
<td></td>
<td>463</td>
</tr>
<tr>
<td>38.2</td>
<td>ii. Losses in Earlier Stages of Descent</td>
<td></td>
<td>467</td>
</tr>
<tr>
<td>38.3</td>
<td>Topological Manifold Level</td>
<td></td>
<td>468</td>
</tr>
<tr>
<td>38.4</td>
<td>Metric Space and Topological Space Levels</td>
<td></td>
<td>471</td>
</tr>
<tr>
<td>38.5</td>
<td>Yet Deeper Levels of Structure</td>
<td></td>
<td>473</td>
</tr>
<tr>
<td>Part III</td>
<td>Quantum Problem of Time</td>
<td>Geometrical Quantization. i. Kinematical Quantization</td>
<td>477</td>
</tr>
<tr>
<td>39</td>
<td></td>
<td>Unconstrained Beables Come First in Geometrical Quantization</td>
<td>478</td>
</tr>
<tr>
<td>39.1</td>
<td></td>
<td></td>
<td>478</td>
</tr>
<tr>
<td>39.2</td>
<td></td>
<td></td>
<td>479</td>
</tr>
<tr>
<td>39.3</td>
<td></td>
<td>Specifically Quantum Attributes of Brackets</td>
<td>479</td>
</tr>
<tr>
<td>39.4</td>
<td></td>
<td>The Groenewold–Van Hove Phenomenon</td>
<td>480</td>
</tr>
<tr>
<td>39.5</td>
<td></td>
<td>Examples of Kinematical Quantization</td>
<td>481</td>
</tr>
<tr>
<td>39.6</td>
<td></td>
<td>ii. Further Global Nontriviality</td>
<td>487</td>
</tr>
<tr>
<td>39.7</td>
<td></td>
<td>Conceptual Outline of the Kochen–Specker Theorem</td>
<td>487</td>
</tr>
<tr>
<td>40 Geometrical Quantization. ii.</td>
<td>Dynamical Quantization</td>
<td>Operator Ordering</td>
<td>489</td>
</tr>
<tr>
<td>40.1</td>
<td></td>
<td></td>
<td>489</td>
</tr>
<tr>
<td>40.2</td>
<td></td>
<td></td>
<td>491</td>
</tr>
<tr>
<td>40.3</td>
<td></td>
<td>Addendum: \mathfrak{q}-Primality at the Quantum Level</td>
<td>492</td>
</tr>
</tbody>
</table>
41 Further Detail of Time and Temporal Relationalism in Quantum Theory ... 493
 41.1 Time in Quantum Theory Revisited .. 493
 41.2 The Quantum Frozen Formalism Problem 494
 41.3 Temporal Relationalism Implementing Canonical Quantum Theory (TRiCQT) .. 495
 41.4 Do Absolute and Relational Mechanics Give Distinct QM? 495
 41.5 Inner Product and Adjointness Issues 498

42 Geometrical Quantization with Nontrivial g. i. Finite Theories 501
 42.1 Configurational Relationalism at the Quantum Level 501
 42.2 Dirac Quantization of Finite Models 502
 42.3 Reduced Quantization of Finite Models 504
 42.4 Three More Operator Ordering Problems 509

43 Geometrical Quantization with Nontrivial g. ii. Field Theories and GR ... 511
 43.1 Further QFT Subtleties .. 511
 43.2 Unconstrained Examples .. 512
 43.3 Dirac Quantization of Geometrodynamics.
 i. Kinematical Quantization ... 512
 43.4 ii. Dynamical Quantization .. 514
 43.5 Dirac-Type Quantization of Nododynamics Alias LQG 516
 43.6 Dirac Quantization of Super-RPM and Supergravity 518
 43.7 Is Quantization Is a Functorial Prescription? 519

44 Tempus Ante Quantum .. 521
 44.1 Finite g-Free Models ... 521
 44.2 Nontrivial g Models .. 522
 44.3 Problems with These Approaches 523

45 Tempus Post Quantum. i. Paralleling QFT 527
 45.1 Attempting a Schrödinger Inner Product 527
 45.2 Attempting a Klein-Gordon Inner Product Based on Riem Time 527
 45.3 ‘Third Quantization’ Generalized and Renamed 528
 45.4 Problem of Time Strategies in Affine Geometrodynamics 529

46 Tempus Post Quantum. ii. Semiclassical Machian Emergent Time . 531
 46.1 Born–Oppenheimer Scheme .. 532
 46.2 Discussion of Adiabatic Approximations 533
 46.3 WKB Scheme ... 534
 46.4 Scale–Shape Split h- and l-Equations 534
 46.5 Semiclassical WKB Emergent Time 534
 46.6 l-Time-Dependent Schrödinger Equation 536
 46.7 Rectified Time and Its Relation to Shape Space 536
 46.8 The WKB Assumption Is Crucial but Unjustified 537
Contents

47 Tempus Post Quantum. iii. Semiclassical Quantum Cosmological Modelling ... 539
 47.1 Back-Reaction, Higher Derivative, and Expectation Terms 539
 47.2 Solving the \(h\)-Equation for Emergent Machian Time 541
 47.3 Some \(l\)-Time-Dependent Schrödinger Equation Regimes 543
 47.4 Dirac-Quantized Semiclassical Schemes 544
 47.5 Extension Including Fermions 546
 47.6 Variational Methods for Quantum Cosmology 546
 47.7 Perturbative Schemes 549
 47.8 Problems ... 549

48 Semiclassicality and Quantum Cosmology: Interpretative Issues ... 551
 48.1 Coherent States 551
 48.2 Wigner Functionals 551
 48.3 Decoherence .. 552
 48.4 Environments .. 553
 48.5 Is Physics only About Subsystems? 553

49 Quantum Constraint Closure 555
 49.1 Split Quantum Constraint Structures and Nontrivial \(G\) 556
 49.2 (Counter)Examples of Quantum Constraint Closure 557
 49.3 Anomalies ... 558
 49.4 Strategies for Dealing with Quantum Constraint Closure Problem 559
 49.5 Quantum Implications of Constraints Closing as Algebroids 560
 49.6 The Semiclassical Case 560
 49.7 Is There a Quantum Dirac-Type Algorithm? 561

50 Quantum Beables or Observables 563
 50.1 Types of Constrained Quantum Beables 563
 50.2 Indirect Constructions for Quantum Dirac Beables \(d\) 565
 50.3 Quantum-Level Problem of Beables 565
 50.4 Beables Motivated from Realist Interpretations 567

51 Fully Timeless Approaches at the Quantum Level 569
 51.1 Quantum-Level Propositions 569
 51.2 Conditional Probabilities 572
 51.3 Timeless Records Theories 575
 51.4 Records Approaches with More than Just Timeless Structure 578

52 Spacetime Primary Approaches: Path Integrals 579
 52.1 Unconstrained Models 579
 52.2 Path Integrals in Gauge Theory 579
 52.3 Strategies for GR Path Integrals 580
 52.4 Temporal Relationalism Implementing Path Integral Quantum Theory (TRiPIQT) 583
 52.5 Canonical-and-Path-Integral Approaches 584
53 Histories Theory at the Quantum Level 585
 53.1 Gell-Mann–Hartle-Type Histories Theory 585
 53.2 Histories Projection Operator (HPO) Approach 586
 53.3 Computation of Decoherence Functionals 587
 53.4 Further Theories, Structures and Problems 588
 53.5 TRei Quantum Histories Theory 589
 53.6 Further Examples of Histories Formulations 590
 53.7 Records Within Quantum Histories Theory 594

54 Combined Histories-Records-Semiclassical Approach 597
 54.1 g-Free Models Without Machian Emergence 598
 54.2 Machian Time Version Sitting Within Semiclassical Approach .. 601
 54.3 Combined Approach for g-Nontrivial Theories 602
 54.4 Construction of Quantum Dirac Beables from Quantum Kuchař Beables ... 603
 54.5 Frontiers of Research ... 604

55 Quantum Foliation Independence Strategies 607
 55.1 Constraint Algebraic Structure’s Ties to Other Facets 607
 55.2 Semiclassical Refoliation Invariance? 607
 55.3 Suitable Model Arenas for Quantum Foliation Issues 608
 55.4 Foliation Problems at the Quantum Level 609

56 Quantum Spacetime Construction Strategies 611
 56.1 Semiclassical Spacetime Construction 611
 56.2 Spacetime Construction in Histories Theory 612

57 Quantum-Level Conclusion ... 613
 57.1 The First Four Facets .. 613
 57.2 Spacetime, Timeless, Histories and Combined Approaches 616
 57.3 State of Completion in Model Arenas 617
 57.4 Research Frontiers ... 617

58 Epilogue III.A. The Multiple Choice Problem 621
 58.1 Multiple Choice Problems ... 621
 58.2 Strategies for the Multiple Choice Problems 622
 58.3 Specific Model Arenas ... 623

59 Epilogue III.B. Quantum Global Problems of Time 625
 59.1 Extending Classification of Global Problems of Time 625
 59.2 Semiclassical Approach ... 626
 59.3 Hidden Time Approaches .. 626
 59.4 Basic Monopole and Gribov Effects at the Quantum Level 627
 59.5 Quantum Issues Following from Stratification 627
 59.6 Constraint Closure ... 628
 59.7 Observables and Beables .. 629
 59.8 Timeless Approaches .. 630
 59.9 Paths and Histories Approaches 630
60 Epilogue III.C. Deeper Levels’ Quantum Background
Independence and Problem of Time 635
60.1 Topological Manifold Level Considerations 636
60.2 Metric and Topological Space Level 637
60.3 Yet Deeper Levels of Structure 638
60.4 Situations with Negligible Deeper Levels of Structure . 639
60.5 Records and Histories 639
60.6 Quantum Theory, Categories and Topoi 640
60.7 Multiple Choice Problem Revisited 641
60.8 Background Independence, Categories and Topoi 642

Appendices: Mathematical Methods for Basic and Foundational
Quantum Gravity

Appendix A Basic Algebra and Discrete Mathematics 647
A.1 Sets and Relations 647
A.2 Groups .. 649
A.3 Linear Algebra. i. Fields and Vector Spaces 650
A.4 ii. Rings and Modules* 653
A.5 Representation Theory 653
A.6 Graphs and Generalizations 653

Appendix B Flat Geometry 655
B.1 Real Geometry ... 655
B.2 Minkowski Spacetime Geometries 659
B.3 Complex Transformations and Geometries 659

Appendix C Basic Analysis 661
C.1 Real Analysis .. 661
C.2 Basic Functional Analysis 663
C.3 Complex Analysis* 664
C.4 Metric Spaces .. 664
C.5 Inverse and Implicit Function Theorems* 664
C.6 Topological Spaces 665

Appendix D Manifold Geometry 667
D.1 Topological Manifolds 667
D.2 Differentiable Manifolds 669
D.3 Affine Differential Geometry 672
D.4 (Semi)Riemannian Manifolds 675
D.5 Some More General Metric Geometries* 677
D.6 Integration on Manifolds 678
D.7 Conformal Transformations, Metrics and Geometry ... 678
D.8 Exercises III. Basic Mathematics and Geometry 680
Appendix E Lie Groups and Lie Algebras 685
 E.1 Examples of Lie Groups and Lie Algebras 686
 E.2 Killing Vectors and Isometries 689
 E.3 Conformal and Homothetic Counterparts 690
 E.4 Some Further Groups Acting upon \mathbb{R}^p 693
 E.5 Yet Further Examples of Lie Groups in Physics 693
 E.6 Lie Representations 694
 E.7 Anticommutator Algebras 696
 E.8 Exercises IV. Groups and Lie Groups 696

Appendix F More Advanced Topology and Geometry* 701
 F.1 Complex Manifolds ... 701
 F.2 The Hodge-* ... 701
 F.3 Algebraic Topology ... 702
 F.4 General and Fibre Bundles 704
 F.5 Characteristic Classes, Indices and Morse Theory 707

Appendix G Configuration Space Geometry: Mechanics* 709
 G.1 (Relational) Mechanics Configuration Spaces 709
 G.2 Picking out the Triangleland Example 714
 G.3 3-Particle Configuration Spaces in More Detail 718
 G.4 Notions of Distance on Configuration Spaces 723

Appendix H Field Theory and GR: Unreduced Configuration Space
 Geometry* .. 725
 H.1 Field Theory: Unreduced Configuration Space Geometry ... 725
 H.2 From Hilbert to Banach and Fréchet Spaces 725
 H.3 Hilbert, Banach and Fréchet Manifolds 726
 H.4 Topology of $\mathcal{Riem}(\Sigma)$ 727
 H.5 $\mathcal{Riem}(\Sigma)$ at Level of Geometrical Metric Structure ... 727
 H.6 Conformal Variants .. 728
 H.7 GR Alongside Minimally-Coupled Matter 729
 H.8 Spaces of Affine Connections 729

Appendix I GR Model Configuration Space Geometries* 731
 I.1 Minisuperspace: Homogeneous GR 731
 I.2 Perturbations about Minisuperspace: Unreduced Formulation . 733

Appendix J The Standard Principles of Dynamics (PoD). i. Finite
 Theory ... 739
 J.1 Lagrangians and Euler–Lagrange Equations 739
 J.2 Conjugate Momenta .. 741
 J.3 Noether’s Theorem ... 741
 J.4 Legendre Transformations 742
 J.5 Passage to the Routhian 742
 J.6 Passage to the Hamiltonian 743
 J.7 Passage to the Anti-Routhian* 743
J.8 Further Auxiliary Spaces* ... 744
J.9 Corresponding Morphisms .. 744
J.10 Morphisms for the (Anti-)Routhian* 745
J.11 Poisson Brackets .. 746
J.12 Poisson Manifolds* ... 746
J.13 Peierls Bracket* ... 747
J.14 Hamilton–Jacobi Theory ... 748
J.15 Hamiltonian Formulation for Constrained Systems 748
J.16 (Anti-)Routhian Analogue of the Legendre Matrix* 752
J.17 Symplectic Treatment of Constrained Systems* 753
J.18 Constraint and Beables Algebraic Structures* 753
J.20 Classical Brackets Extended to Include Fermions* 755

Appendix K The Standard Principles of Dynamics, ii. Field Theory . 757
K.1 Classification of Field-Theoretic Versions of the Principles of Dynamics ... 757
K.2 SR Spacetime Version .. 757
K.3 Space–Time Split SR Version 758
K.4 Curved Spacetime and GR Versions 760
K.5 Space–Time Split GR Version 761

Appendix L Temporal Relationalism Implementing Principles of Dynamics (TRiPoD)* ... 763
L.1 Finite-Field Theoretic Portmanteau Notation 763
L.2 Jacobi–Mach Formulation ... 763
L.3 Free End Notion of Space Variation 765
L.4 TRi Legendre Transformation 766
L.5 TRi-Morphisms and Brackets, i 767
L.6 dA-Hamiltonians and Phase Spaces, and TRi Dirac-Type Algorithms ... 767
L.7 TRi-Morphisms and Brackets, ii) 770
L.8 TRi Constraint Algebraic Structures and Beables 770
L.9 TRi Hamilton–Jacobi Theory 770
L.10 TRiPoD End-Summary .. 771
L.11 Parageodesic Principle Split Conformal Transformations ... 771

Appendix M Quotient Spaces and Stratified Manifolds** 775
M.1 Quotienting out Groups: Further Useful Notions 775
M.2 Quotient Topologies ... 775
M.3 Orbifolds .. 776
M.4 Quotienting by Lie Group Action, and Slices 777
M.5 Stratified Manifolds ... 777
M.6 Locally Compact Hausdorff Second-Countable (LCHS) Spaces 780
M.7 Differential Spaces and Stratifolds 780
M.8 Further Stratified Spaces from the Principles of Dynamics ... 780
Appendix N Reduced Configuration Spaces for Field Theory and GR** 781
 N.1 Gauge Group Orbit Spaces .. 781
 N.2 Loops and Loop Spaces for Gauge Theory 782
 N.3 Topology of \(\mathfrak{g} = \text{Diff}(\Sigma) \) 782
 N.4 Topology of Superspace(\(\Sigma \)) 783
 N.5 Comparison Between Theories. i. Theorems 784
 N.6 ii. Handling Dynamical Trajectories Exiting a Stratum 785
 N.7 \(\mathcal{CS}(\Sigma) \) and \(\{ \mathcal{CS} + V \}(\Sigma) \) 786
 N.8 Notions of Distance for Geometrodynamics 787
 N.9 Modelling with Infinite-d Stratifolds 788
 N.10 Reduced Treatment of Slightly Inhomogeneous Cosmology 788
 N.11 Further Configuration Spaces 790
 N.12 Loops and Loop Spaces 790
 N.13 Knots and Knotspace ... 791

Appendix O DE Theorems for Geometrodynamics’ Problem of Time* 793
 O.1 Types of Global Issues 793
 O.2 ODEs .. 794
 O.3 First-Order PDEs ... 795
 O.4 Second-Order PDEs ... 795
 O.5 GR Initial Value Problem Theorems. i. Thin Sandwich Approach 796
 O.6 ii. Conformal Approach 797
 O.7 Theorems for the GR Cauchy Problem 797
 O.8 Basic FDE Theory for GR and QFT 798

Appendix P Function Spaces, Measures and Probabilities 801
 P.1 Basic Formulation of Probability 801
 P.2 Measure Theory* .. 803
 P.3 More Advanced Formulation of Probability* 804
 P.4 Distributions (in the Sense of Functional Analysis)* 805
 P.5 Further Useful Function Spaces* 805

Appendix Q Statistical Mechanics (SM), Information, Correlation 807
 Q.1 Thermodynamics ... 807
 Q.2 Thermodynamics for GR More Generally* 808
 Q.3 Spaces of Substates* ... 809
 Q.4 Imperfect Knowledge of a (Sub)system* 809
 Q.5 Classical Statistical Mechanics (SM) 810
 Q.6 Fine- and Coarse-Graining 811
 Q.7 Classical Microscopic Notions of Entropy 813
 Q.8 Classical Notions of Information* 813
 Q.9 Classical Notions of Correlation* 814

Appendix R Stochastic Geometry* 817
 R.1 Metric Shape Statistics 817
 R.2 Stratified Manifold Version** 819
The Problem of Time
Quantum Mechanics Versus General Relativity
Anderson, E.
2017, XXXVIII, 920 p. 172 illus., 66 illus. in color., Hardcover
ISBN: 978-3-319-58846-9