Contents

Part I Integration Framework and Usage

An Attempt to Integrate Software Tools at Microscale and Above Towards an ICME Approach for Heat Treatment of a DP Steel Gear with Reduced Distortion 3
Deepu Mathew John, Hamidreza Farivar, Gerald Rothenbucher, Ranjeet Kumar, Pramod Zagade, Danish Khan, Aravind Babu, B.P. Gautham, Ralph Bernhardt, G. Phanikumar and Ulrich Prahl

Integrated Microstructure Based Modelling of Process-Chain for Cold Rolled Dual Phase Steels ... 15
Danish Khan, Ayush Suhane, P. Srimannarayana, Akash Bhattacharjee, Gerald Tennyson, Pramod Zagade and B.P. Gautham

Improving Manufacturing Quality Using Integrated Computational Materials Engineering ... 23
Dana Frankel, Nicholas Hatcher, David Snyder, Jason Sebastian, Gregory B. Olson, Greg Vernon, Wes Everhart and Lance Carroll

ICME Based Hierarchical Design Using Composite Materials for Automotive Structures ... 33
Azeez Shaik, Yagnik Kalariya, Rizwan Pathan and Amit Salvi

Towards Bridging the Data Exchange Gap Between Atomistic Simulation and Larger Scale Models ... 45
David Reith, Mikael Christensen, Walter Wolf, Erich Wimmer and Georg J. Schmitz

A Flowchart Scheme for Information Retrieval in ICME Settings 57
Georg J. Schmitz
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>An Ontological Framework for Integrated Computational Materials Engineering</td>
<td>69</td>
</tr>
<tr>
<td>Sreedhar Reddy, B.P. Gautham, Prasenjit Das, Raghavendra Reddy Yeddula, Sushant Vale and Chetan Malhotra</td>
<td></td>
</tr>
<tr>
<td>European Materials Modelling Council</td>
<td>79</td>
</tr>
<tr>
<td>Nadja Adamovic, Pietro Asinari, Gerhard Goldbeck, Adham Hashibon, Kersti Hermansson, Denka Hristova-Bogaerds, Rudolf Koopmans, Tom Verbrugge and Erich Wimmer</td>
<td></td>
</tr>
<tr>
<td>Facilitating ICME Through Platformization</td>
<td>93</td>
</tr>
<tr>
<td>B.P. Gautham, Sreedhar Reddy, Prasenjit Das and Chetan Malhotra</td>
<td></td>
</tr>
<tr>
<td>Bridging the Gap Between Bulk Properties and Confined Behavior Using Finite Element Analysis</td>
<td>103</td>
</tr>
<tr>
<td>David Linder, John Ågren and Annika Borgenstam</td>
<td></td>
</tr>
<tr>
<td>Ontology Dedicated to Knowledge-Driven Optimization for ICME Approach</td>
<td>113</td>
</tr>
<tr>
<td>Piotr Macioł, Andrzej Macioł and Łukasz Rauch</td>
<td></td>
</tr>
<tr>
<td>Integration of Experiments and Simulations to Build Material Big-Data</td>
<td>123</td>
</tr>
<tr>
<td>Gun Jin Yun</td>
<td></td>
</tr>
<tr>
<td>Part II ICME Design Tools and Application</td>
<td></td>
</tr>
<tr>
<td>ICME-Based Process and Alloy Design for Vacuum Carburized Steel Components with High Potential of Reduced Distortion</td>
<td>133</td>
</tr>
<tr>
<td>H. Farivar, G. Rothenbucher, U. Prahl and R. Bernhardt</td>
<td></td>
</tr>
<tr>
<td>Study of Transient Behavior of Slag Layer in Bottom Purged Ladle: A CFD Approach</td>
<td>145</td>
</tr>
<tr>
<td>Vishnu Teja Mantripragada and Sabita Sarkar</td>
<td></td>
</tr>
<tr>
<td>Developing Cemented Carbides Through ICME</td>
<td>155</td>
</tr>
<tr>
<td>Yong Du, Yingbiao Peng, Peng Zhou, Yafei Pan, Weibin Zhang, Cong Zhang, Kaiming Cheng, Kai Li, Han Li, Haixia Tian, Yue Qiu, Peng Deng, Na Li, Chong Chen, Yaru Wang, Yi Kong, Li Chen, Jianzhan Long, Wen Xie, Guanghua Wen, Shequan Wang, Zhongjian Zhang and Tao Xu</td>
<td></td>
</tr>
<tr>
<td>CSUDDCC2: An Updated Diffusion Database for Cemented Carbides</td>
<td>169</td>
</tr>
<tr>
<td>Peng Deng, Yong Du, Weibin Zhang, Cong Chen, Cong Zhang, Jinfeng Zhang, Yingbiao Peng, Peng Zhou and Weimin Chen</td>
<td></td>
</tr>
</tbody>
</table>
Part III Microstructure Evolution

Multi-scale Modeling of Quasi-directional Solidification of a Cast Si-Rich Eutectic Alloy 183
Chang Kai Wu, Kwan Skinner, Andres E. Becerra, Vasgen A. Shamamian and Salem Mosbah

Numerical Simulation of Macrosegregation in a 535 Tons Steel Ingot with a Multicomponent-Multiphase Model. 193
Kangxin Chen, Wutao Tu and Houfa Shen

Validation of CAFE Model with Experimental Macroscopic Grain Structures in a 36-Ton Steel Ingot 203
Jing’an Yang, Zhenhu Duan, Houfa Shen and Baicheng Liu

Analysis of Localized Plastic Strain in Heterogeneous Cast Iron Microstructures Using 3D Finite Element Simulations. 217
Kent Salomonsson and Jakob Olofsson

An Integrated Solidification and Heat Treatment Model for Predicting Mechanical Properties of Cast Aluminum Alloy Component ... 227
Chang Kai Wu and Salem Mosbah

Linked Heat Treatment and Bending Simulation of Aluminium Tailored Heat Treated Profiles. 237
Hannes Fröck, Matthias Graser, Michael Reich, Michael Lechner, Marion Merklein and Olaf Kessler

Numerical Simulation of Meso-Micro Structure in Ni-Based Superalloy During Liquid Metal Cooling Process. 249
Xuewei Yan, Wei Li, Lei Yao, Xin Xue, Yanbin Wang, Gang Zhao, Juntao Li, Qingyan Xu and Baicheng Liu

Part IV Phase Field Modeling

Multiscale Simulation of α-Mg Dendrite Growth via 3D Phase Field Modeling and Ab Initio First Principle Calculations 263
Jinglian Du, Zhipeng Guo, Manhong Yang and Shoumei Xiong

Macro- and Micro-Simulation and Experiment Study on Microstructure and Mechanical Properties of Squeeze Casting Wheel of Magnesium Alloy ... 273
Shan Shang, Bin Hu, Zhiquiang Han, Weihua Sun and Alan A. Luo

Solidification Simulation of Fe–Cr–Ni–Mo–C Duplex Stainless Steel Using CALPHAD-Coupled Multi-phase Field Model with Finite Interface Dissipation ... 283
Sukeharu Nomoto, Kazuki Mori, Masahito Segawa and Akinori Yamanaka
Phase-Field Modeling of θ' Precipitation Kinetics in W319 Alloys
Yanzhou Ji, Bita Ghaffari, Mei Li and Long-Qing Chen

Part V Mechanical Performance Using Multi-scale Modeling

Hybrid Hierarchical Model for Damage and Fracture Analysis in Heterogeneous Material
Alex V. Vasenkov

Fatigue Performance Prediction of Structural Materials by Multi-scale Modeling and Machine Learning
Takayuki Shiraiwa, Fabien Briffod, Yuto Miyazawa and Manabu Enoki

Nano Simulation Study of Mechanical Property Parameter for Microstructure-Based Multiscale Simulation
K. Mori, M. Oba, S. Nomoto and A. Yamanaka

Part VI ICME Success Stories and Applications

Multiscale, Coupled Chemo-mechanical Modeling of Bainitic Transformation During Press Hardening
Ulrich Prahl, Mingxuan Lin, Marc Weikamp, Claas Hueter, Diego Schicchi, Martin Hunkel and Robert Spatschek

Development of Microstructure-Based Multiscale Simulation Process for Hot Rolling of Duplex Stainless Steel
Mototeru Oba, Sukeharu Nomoto, Kazuki Mori and Akinori Yamanaka

A Decision-Based Design Method to Explore the Solution Space for Microstructure After Cooling Stage to Realize the End Mechanical Properties of Hot Rolled Product
Anand Balu Nellippallil, Vignesh Rangaraj, Janet K. Allen, Farrokh Mistree, B.P. Gautham and Amarendra K. Singh

Influence of Computational Grid and Deposit Volume on Residual Stress and Distortion Prediction Accuracy for Additive Manufacturing Modeling

Author Index

Subject Index