Contents

Part I Introduction: Research Motivations, Approaches, Challenges, and Overview of Results

1 **Research Motivations** ... 3
 1.1 “Understanding Intelligence” as the Greatest Problem of the 21st Century ... 3
 1.2 Personal Research Motivations Based on the Author’s Technical CSE Experiences ... 7
 1.2.1 Author’s Technical Experience: Development of AI Applications and CSE Project Management, ... 7
 1.2.2 PC-TPGP: A Summary of Conclusions Related to Causes of TPGP ... 11
 1.3 Economic Motivations ... 13
 1.4 Summary of Research Motivations 15

2 **Research Objectives and Selected Approaches** 17
 2.1 The Main Research Objectives 17
 2.2 Selected Approaches to the Objectives 19

3 **Challenges of WisTech (Based on IGrC) for CAS Modeling, Controlling, and Monitoring** ... 25
 3.1 Understanding CAS .. 29
 3.2 Symbol Grounding Problem and Semantic Pointers 30
 3.3 Computability by C-granules ... 31
 3.4 Asymptotic Correctness of Learning and Real-Life Problems .. 33
 3.5 Concepts, Agents, Ontologies, Languages, and Societies of Agents .. 35
 3.6 Modeling Compound C-granules as Networks of C-granules .. 35
3.7 Adaptive Judgment 38
3.8 Wisdom ... 42

4 Main Overview of Results 45
5 Guide to the Contents of the Book 49

Part II CSE: Rudiments

6 The Concept of Complex System 55
 6.1 Complex System 55
 6.2 Software Intensive Systems 58
 6.3 Cyber-Physical System (CPS) 58
 6.4 Internet of Things and Wisdom Web of Things 59
 6.5 Ultra-Large-Scale Systems (ULS-S) 61

7 Examples of Complex Systems 63
 7.1 Natural Computing Systems 63
 7.2 Political Systems 66
 7.3 Economical Systems 67
 7.4 Risk Management Systems 67
 7.5 Quality Assurance Systems 68
 7.6 Information Security Management Systems 68
 7.7 Other Examples of Complex Systems 69

8 Concept of Complex Systems Engineering (CSE) 71

Part III The Theory-Practice Gap Problem (TPGP)

9 CSE Practice: CSE Crisis 81
 9.1 CSE Crisis: Introduction 81
 9.2 CSE Crisis Case Study: Software Crisis 83
 9.3 CSE Crisis Case Study: Global Financial Crisis and Risk Management Systems 90

10 CSE Theory: Some Approaches 97

11 TPGP: The Concept of the Theory—Practice Gap Problem 111

12 CSE Crisis: Some Examples of Causes 115
 12.1 Causes of CSE Crisis: Communication and Vague Requirements 115
 12.2 Causes of CSE Crisis: Partial Perception of Multidimensional Dynamic Complexity 121
 12.3 Causes of CSE Crisis: Pitfalls of Thinking Using “Modern” Mathematics 122
 12.4 Causes of CSE Crisis: Some Other Common Causes 129
13 Fundamental Precause of CSE Crisis (FP3C) ... 137
 13.1 FP3C: Description ... 137
 13.2 FP3C: Complexity of the Problem ... 139
 13.2.1 FP3C: Problem of Granulation ... 140
 13.2.2 FP3C: Problem of Distributed Computing 141
 13.2.3 FP3C: Problem of Interactions and Adaptive Strategies 142
 13.2.4 FP3C: Problem of Adaptive Reasoning About Interactive Granular Computations, Induction of Local Models, Their Aggregations and Aggregation of Aggregations 146

14 TPGP: An Approach to Large Scale Context by Adaptive Selection of CSE Principles ... 151
 14.1 TPGP: Y2K and Ultra-Large-Scale Systems (ULS-S) as Examples of Large Scale Contexts ... 151
 14.2 TPGP: Links to Risk Management, Software Engineering, and Artificial Intelligence ... 154
 14.3 TPGP: The Problem of Selection and Adaptation of CSE Principles ... 157
 14.3.1 Approach to TPGP Based on a Skillful Selection, Obedience, and Adaptation of an Appropriate Family of Principles ... 159
 14.3.2 Examples of Universal CSE Principles 163
 14.3.3 Examples of Dedicated CSE Principles Concerning Projects Described in Case Studies ... 181
 14.4 Research Motivations Related to the Selection of CSE Principles ... 182

15 TPGP: WisTech as a “Silver Bullet” for Interactive Approximations ... 187

Part IV CSE: Case Studies

16 POLTAX ... 193
 16.1 Introduction to POLTAX ... 193
 16.2 POLTAX: Background, Genesis and Goals 198
 16.3 POLTAX: Examples of CSE Principles 200
 16.3.1 Introduction to POLTAX CSE Principles 201
 16.3.2 Examples of Fundamental POLTAX CSE Principles 204
 16.3.3 POLTAX Offset Agreements and the HR Development Principle ... 208
 16.3.4 Political Support for the POLTAX CSE Principles 211
 16.3.5 Difficulties with the Implementation of the ABC Book for POLTAX ... 216
21.4 Need for Constructing and Improving “a Science-Friendly Language” .. 309
21.5 Relationships with Rough Sets and Ecorithms 310

Part V CSE as a Metaphor of Mind “Computations”

22 CSE as Interactive Thinking by Society of Agents 315
23 The Model of Thinking Problem (MT): How Do We Understand and Describe the Processes of Human Thinking, Communicating and Thought-Refinement? ... 321
23.1 Definition of the Model of Thinking Problem (MT) 321
23.2 Some Acceptance Criteria for Potential MT Solutions 322
23.3 MT Solution Framework .. 324

24 Judgment, Constructive Mathematics, and Intuitionism 327

25 Thinking as a “Languageless Activity of the Mind” Having Its Origin in the Perception of a Move of Time 335

26 Physical World and Uncertainty as Parts of the “Essence of Human Language” .. 341

Part VI WisTech Approach to Models of Mind: Preliminaries

27 Preliminaries of IGrC in the Context of Agent Architecture 351
27.1 Agents, Interactions, Perceiving Glasses, and Complex Windows ... 351
27.2 Some Preliminaries of IGrC 362

28 Selected Distinguishing Properties of WisTech IGrC Models 367
28.1 Limiting the IGrC Model to Physical World 367
28.1.1 The Physical Nature of Interactions 368
28.1.2 The Physical Nature of Agent’s Perceiving 369
28.1.3 The Physical Nature of Agent’s Memory 373
28.1.4 The Physical Nature of Agent’s Control 378
28.1.5 The Physical Nature of Agent’s Perception 381
28.2 C-granules as Computational Building Blocks for WisTech 389
28.2.1 C-granules as Components of Perception via Interactions ... 389
28.2.2 Context of Using C-granules in Perception Functioning Schemes in WisTech ... 397
28.2.3 Examples of C-granules .. 403
28.2.4 Interactive Granulation: Aggregation, Decomposition, and Transformation of C-granules 406
28.3 Adaptive Learning of Concept Approximations to Support Agent in the Decision-Making Process 417
 28.3.1 Learning Through Memorizing “Important” Patterns 417
 28.3.2 “Machine-Like” Learning Process—Interactive Granulation 419
28.4 Language of Agents and Communication 425
 28.4.1 Private Language and the Agent’s Infogranules 425
 28.4.2 Language of Communication Among Agents 432

29 The Wisdom Equation and C-granules 435
 29.1 Interpretation of the Wisdom Equation as a Basis of C-granules 435
 29.2 Wisdom Equation in the Context of CSE Projects 438

30 Some C-granule “Links” to Socratic Dialogues, Tarski Truth, and Semantic Games 443

Part VII Framework Postulates for Ontology of WisTech Models

31 Complexity of Designing an Ontology for Practically Useful IGrC Models .. 451
 31.1 IGrC and CSE Development Synergy Hypothesis 451
 31.2 Communication in CSE Projects from the Perspective of IGrC and CSE Synergy Hypothesis 455
 31.3 Level of Difficulty with Basic Ontological Task for IGrC 460
 31.4 Logical Structures of Contemporary Mathematics and C-granules for IGrC Models 464
 31.4.1 An Introduction to Logical Structures 464
 31.4.2 Fundamental Differences Between Concept of C-granule and Concept of Logical Structure 472

32 Framework Postulates for WisTech (FPW) 477
 32.1 The Main Objectives of FPW 477
 32.2 General Structure of Packages of FPW Postulates 478
 32.3 Physical Character of Agent, C-granule, and Agent’s Perception .. 480
 32.3.1 FPW-01: Physical World 480
 32.3.2 FPW-02: Agent’s Networks of Interactions 480
 32.3.3 FPW-03: Agent’s C-granules 484
 32.3.4 FPW-04: Perceivability and Hunk Configurations 486
 32.3.5 FPW-05: Predictability and M-hunks 489
 32.3.6 FPW-06: Interactive Computations, Perceiving Attributes, and Hunk Properties 490
 32.3.7 FPW-07: Interaction Properties and Interaction Scene 492
Part VIII WisTech Introduction to Efficient Acting, Learning, and CSE Project Implementation

33 WisTech Approach to Agent's Efficiency Management

- **33.1** “Efficiency” in the Most Important Agent's Tasks 525
- **33.2** The Role of “Efficiency” and Its Interpretation in AI and CSE Projects 527
- **33.3** Efficiency Management as an Extension to Risk Management 530
- **33.4** Agent’s Control and Reasoning Based on Agent’s Efficiency Management as Illustrated by the Fire and Rescue Operation .. 534
- **33.5** Engine for Efficiency Management (EEM) .. 540
- **33.6** An Approach to CSE Based on WisTech Efficiency Management 544
- **33.7** “Parametrizability” of Efficiency Management Framework (EMF) 554

34 Some Issues of WisTech Approach to CSE

- **34.1** Learning How to Perform Adaptive Judgment About Important Properties of Interactive Computations .. 555
- **34.2** Cooperation of Agents and Cooperation of c-granules .. 561
 - **34.2.1** Some Roots of Wistech Approach to Language ... 561
34.2.2 Communication by C-granules and/or Agents 566
34.2.3 Cooperation and Competition of C-granules
and/or Agents) 569
34.2.4 Agent Language and Communication
for Cooperation 573

35 A WisTech Approach to CSE .. 579
35.1 Main Objectives for WisTech Approach to Frameworks
for CSE ... 579
35.2 CSE Projects for the Generation of New AI Technologies 581
35.3 C-granular Fire and Rescue Operations: A WisTech
Approach to an Intelligent Commander’s Remote Control 585

36 Conclusions and Future Research ... 587
36.1 Conclusions ... 587
36.2 Future Research ... 601

Appendix A: Principle of Anchoring a Project in Top
Management—Examples of Detailed Principles 603

Appendix B: Principle of Providing a Proper Role of the Human
Factor in Management—Examples of Detailed Principles 605

Appendix C: Principle of Providing a Proper Level
of Communication—Examples of Detailed Principles 607

Appendix D: IV&V Team—Examples of Detailed Principles 611

Appendix E: Principle of an Appropriate Document
Management—Examples of Detailed Principles 613

Appendix F: Examples of Basic Principles of CSE Project
Development (BPCD) ... 617

Appendix G: Criteria for the Optimization of a Family
of Currently Used Principles—Examples 623

References ... 625

Index .. 647
Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective
Jankowski, A.
2017, XLIII, 654 p. 137 illus., 102 illus. in color., Hardcover
ISBN: 978-3-319-57626-8