Contents

Part I Introduction: Research Motivations, Approaches, Challenges, and Overview of Results

1 **Research Motivations** .. 3
 1.1 “Understanding Intelligence” as the Greatest Problem of the 21st Century .. 3
 1.2 Personal Research Motivations Based on the Author’s Technical CSE Experiences 7
 1.2.1 Author’s Technical Experience: Development of AI Applications and CSE Project Management 7
 1.2.2 PC-TPGP: A Summary of Conclusions Related to Causes of TPGP ... 11
 1.3 Economic Motivations .. 13
 1.4 Summary of Research Motivations 15

2 **Research Objectives and Selected Approaches** 17
 2.1 The Main Research Objectives 17
 2.2 Selected Approaches to the Objectives 19

3 **Challenges of WisTech (Based on IGrC) for CAS Modeling, Controlling, and Monitoring** 25
 3.1 Understanding CAS .. 29
 3.2 Symbol Grounding Problem and Semantic Pointers 30
 3.3 Computability by C-granules 31
 3.4 Asymptotic Correctness of Learning and Real-Life Problems .. 33
 3.5 Concepts, Agents, Ontologies, Languages, and Societies of Agents .. 35
 3.6 Modeling Compound C-granules as Networks of C-granules .. 35
3.7 Adaptive Judgment ... 38
3.8 Wisdom .. 42

4 Main Overview of Results .. 45

5 Guide to the Contents of the Book .. 49

Part II CSE: Rudiments

6 The Concept of Complex System .. 55
6.1 Complex System ... 55
6.2 Software Intensive Systems .. 58
6.3 Cyber-Physical System (CPS) .. 58
6.4 Internet of Things and Wisdom Web of Things 59
6.5 Ultra-Large-Scale Systems (ULS-S) .. 61

7 Examples of Complex Systems .. 63
7.1 Natural Computing Systems ... 63
7.2 Political Systems ... 66
7.3 Economical Systems ... 67
7.4 Risk Management Systems .. 67
7.5 Quality Assurance Systems .. 68
7.6 Information Security Management Systems 68
7.7 Other Examples of Complex Systems .. 69

8 Concept of Complex Systems Engineering (CSE) 71

Part III The Theory-Practice Gap Problem (TPGP)

9 CSE Practice: CSE Crisis .. 81
9.1 CSE Crisis: Introduction ... 81
9.2 CSE Crisis Case Study: Software Crisis 83
9.3 CSE Crisis Case Study: Global Financial Crisis and Risk Management Systems .. 90

10 CSE Theory: Some Approaches ... 97

11 TPGP: The Concept of the Theory—Practice Gap Problem 111

12 CSE Crisis: Some Examples of Causes 115
12.1 Causes of CSE Crisis: Communication and Vague Requirements .. 115
12.2 Causes of CSE Crisis: Partial Perception of Multidimensional Dynamic Complexity .. 121
12.3 Causes of CSE Crisis: Pitfalls of Thinking Using “Modern” Mathematics .. 122
12.4 Causes of CSE Crisis: Some Other Common Causes 129
13 Fundamental Precause of CSE Crisis (FP3C) ... 137
 13.1 FP3C: Description ... 137
 13.2 FP3C: Complexity of the Problem ... 139
 13.2.1 FP3C: Problem of Granulation .. 140
 13.2.2 FP3C: Problem of Distributed Computing 141
 13.2.3 FP3C: Problem of Interactions and Adaptive Strategies 142
 13.2.4 FP3C: Problem of Adaptive Reasoning About Interactive Granular Computations, Induction of Local Models, Their Aggregations and Aggregation of Aggregations 146

14 TPGP: An Approach to Large Scale Context by Adaptive Selection of CSE Principles ... 151
 14.1 TPGP: Y2K and Ultra-Large-Scale Systems (ULS-S) as Examples of Large Scale Contexts ... 151
 14.2 TPGP: Links to Risk Management, Software Engineering, and Artificial Intelligence ... 154
 14.3 TPGP: The Problem of Selection and Adaptation of CSE Principles ... 157
 14.3.1 Approach to TPGP Based on a Skillful Selection, Obedience, and Adaptation of an Appropriate Family of Principles ... 159
 14.3.2 Examples of Universal CSE Principles 163
 14.3.3 Examples of Dedicated CSE Principles Concerning Projects Described in Case Studies ... 181
 14.4 Research Motivations Related to the Selection of CSE Principles ... 182

15 TPGP: WisTech as a “Silver Bullet” for Interactive Approximations ... 187

Part IV CSE: Case Studies

16 POLTAX .. 193
 16.1 Introduction to POLTAX ... 193
 16.2 POLTAX: Background, Genesis and Goals 198
 16.3 POLTAX: Examples of CSE Principles .. 200
 16.3.1 Introduction to POLTAX CSE Principles 201
 16.3.2 Examples of Fundamental POLTAX CSE Principles 204
 16.3.3 POLTAX Offset Agreements and the HR Development Principle ... 208
 16.3.4 Political Support for the POLTAX CSE Principles 211
 16.3.5 Difficulties with the Implementation of the ABC Book for POLTAX ... 216
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.3.6</td>
<td>POLTAX CSE Principles and Japanese Approach to Complex IT Projects for the Ministry of Finance in Japan</td>
<td>220</td>
</tr>
<tr>
<td>16.3.7</td>
<td>Today and the Future of CSE Principles in POLTAX-Type Projects</td>
<td>224</td>
</tr>
<tr>
<td>16.4</td>
<td>POLTAX: Brief History of the First Decade</td>
<td>225</td>
</tr>
<tr>
<td>16.5</td>
<td>POLTAX: Main Results</td>
<td>232</td>
</tr>
<tr>
<td>16.6</td>
<td>POLTAX: Conclusions</td>
<td>238</td>
</tr>
<tr>
<td>17</td>
<td>AlgoTradix</td>
<td>243</td>
</tr>
<tr>
<td>17.1</td>
<td>AlgoTradix: Background, Genesis and Goals</td>
<td>243</td>
</tr>
<tr>
<td>17.2</td>
<td>AlgoTradix: Examples of CSE Principles</td>
<td>249</td>
</tr>
<tr>
<td>17.3</td>
<td>AlgoTradix: Brief History</td>
<td>256</td>
</tr>
<tr>
<td>17.4</td>
<td>AlgoTradix: Main Results</td>
<td>257</td>
</tr>
<tr>
<td>17.5</td>
<td>AlgoTradix: Conclusions</td>
<td>264</td>
</tr>
<tr>
<td>18</td>
<td>Merix</td>
<td>269</td>
</tr>
<tr>
<td>18.1</td>
<td>Merix: Background, Genesis and Goals</td>
<td>269</td>
</tr>
<tr>
<td>18.2</td>
<td>Merix: Examples of CSE Principles</td>
<td>270</td>
</tr>
<tr>
<td>18.3</td>
<td>Merix: A Brief History</td>
<td>271</td>
</tr>
<tr>
<td>18.4</td>
<td>Merix: Main Results</td>
<td>272</td>
</tr>
<tr>
<td>18.5</td>
<td>Merix: Conclusions</td>
<td>279</td>
</tr>
<tr>
<td>19</td>
<td>Excavio</td>
<td>281</td>
</tr>
<tr>
<td>19.1</td>
<td>Excavio: Background, Genesis and Goals</td>
<td>281</td>
</tr>
<tr>
<td>19.2</td>
<td>Excavio: Examples of CSE Principles</td>
<td>283</td>
</tr>
<tr>
<td>19.3</td>
<td>Excavio: A Brief History</td>
<td>295</td>
</tr>
<tr>
<td>19.4</td>
<td>Excavio: Main Results</td>
<td>295</td>
</tr>
<tr>
<td>19.5</td>
<td>Excavio: Conclusions</td>
<td>296</td>
</tr>
<tr>
<td>20</td>
<td>Unmanned Aerial Vehicle (UAV)</td>
<td>297</td>
</tr>
<tr>
<td>20.1</td>
<td>UAV: Background, Genesis and Goals</td>
<td>297</td>
</tr>
<tr>
<td>20.2</td>
<td>UAV: Examples of CSE Principles</td>
<td>298</td>
</tr>
<tr>
<td>20.3</td>
<td>UAV: A Brief History</td>
<td>302</td>
</tr>
<tr>
<td>20.4</td>
<td>UAV: Main Results</td>
<td>302</td>
</tr>
<tr>
<td>20.5</td>
<td>UAV: Conclusions</td>
<td>302</td>
</tr>
<tr>
<td>21</td>
<td>Conclusions: Toward Science-Friendly Languages for Interaction Rules & CSE Principles</td>
<td>303</td>
</tr>
<tr>
<td>21.1</td>
<td>Introduction to Some Conclusions from Case Studies</td>
<td>303</td>
</tr>
<tr>
<td>21.2</td>
<td>How to Understand the Essence of Wisdom of Project Managers and Other CSE Project Participants?</td>
<td>305</td>
</tr>
<tr>
<td>21.3</td>
<td>Representation of Interaction, Perception, and Learning Rules by C-granules</td>
<td>306</td>
</tr>
</tbody>
</table>
28.3 Adaptive Learning of Concept Approximations to Support Agent in the Decision-Making Process 417
 28.3.1 Learning Through Memorizing “Important” Patterns ... 417
 28.3.2 “Machine-Like” Learning Process—Interactive Granulation .. 419
28.4 Language of Agents and Communication 425
 28.4.1 Private Language and the Agent’s Infogranules 425
 28.4.2 Language of Communication Among Agents 432

29 The Wisdom Equation and C-granules 435
 29.1 Interpretation of the Wisdom Equation as a Basis of C-granules ... 435
 29.2 Wisdom Equation in the Context of CSE Projects 438

30 Some C-granule “Links” to Socratic Dialogues, Tarski Truth, and Semantic Games 443

Part VII Framework Postulates for Ontology of WisTech Models

31 Complexity of Designing an Ontology for Practically Useful IGrC Models .. 451
 31.1 IGrC and CSE Development Synergy Hypothesis 451
 31.2 Communication in CSE Projects from the Perspective of IGrC and CSE Synergy Hypothesis 455
 31.3 Level of Difficulty with Basic Ontological Task for IGrC ... 460
 31.4 Logical Structures of Contemporary Mathematics and C-granules for IGrC Models 464
 31.4.1 An Introduction to Logical Structures 464
 31.4.2 Fundamental Differences Between Concept of C-granule and Concept of Logical Structure 472

32 Framework Postulates for WisTech (FPW) 477
 32.1 The Main Objectives of FPW ... 477
 32.2 General Structure of Packages of FPW Postulates 478
 32.3 Physical Character of Agent, C-granule, and Agent’s Perception ... 480
 32.3.1 FPW-01: Physical World .. 480
 32.3.2 FPW-02: Agent’s Networks of Interactions 480
 32.3.3 FPW-03: Agent’s C-granules 484
 32.3.4 FPW-04: Perceivability and Hunk Configurations 486
 32.3.5 FPW-05: Predictability and M-hunks 489
 32.3.6 FPW-06: Interactive Computations, Perceiving Attributes, and Hunk Properties 490
 32.3.7 FPW-07: Interaction Properties and Interaction Scene ... 492
32.3.8 FPW-08: Interaction Plans .. 494
32.3.9 FPW-09: Agent’s Perception 496

32.4 Need Satisfiability, Effectiveness, and Efficiency
of Interaction Plans .. 497
32.4.1 FPW-10: Adaptive Judgment Relative
to the Agent’s Hierarchy of Needs 497
32.4.2 FPW-11: Cost/Benefit Analysis CBA for Interaction
Plans ... 502
32.4.3 FWP-12: SWOT Analysis and Risks of Interaction
Plan .. 507
32.4.4 FPW-13: Co-risks and Efficiency
of Interaction Plans ... 509
32.4.5 FPW-14: Agent’s Most Important Tasks
and Their Execution Based on the Process
of Perception of a Perceived Situation
and Reasoning About It ... 511
32.4.6 FPW-15: Communication Among C-granules
and Among Agents ... 513
32.4.7 FPW-16: Cooperation Among Agents
for Problem Solving ... 518

Part VIII WisTech Introduction to Efficient Acting, Learning,
and CSE Project Implementation

33WisTech Approach to Agent's Efficiency Management 525
33.1 “Efficiency” in the Most Important Agent's Tasks 525
33.2 The Role of “Efficiency” and Its Interpretation
in AI and CSE Projects .. 527
33.3 Efficiency Management as an Extension to Risk
Management ... 530
33.4 Agent’s Control and Reasoning Based on Agent’s
Efficiency Management as Illustrated by the Fire
and Rescue Operation ... 534
33.5 Engine for Efficiency Management (EEM) 540
33.6 An Approach to CSE Based on WisTech Efficiency
Management ... 544
33.7 “Parametrizability” of Efficiency Management Framework
(EMF) ... 554

34 Some Issues of WisTech Approach to CSE 555
34.1 Learning How to Perform Adaptive Judgment About
Important Properties of Interactive Computations 555
34.2 Cooperation of Agents and Cooperation of c-granules 561
34.2.1 Some Roots of Wistech Approach to Language 561
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>34.2.2 Communication by C-granules and/or Agents</td>
<td>566</td>
</tr>
<tr>
<td>34.2.3 Cooperation and Competition of C-granules and/or Agents)</td>
<td>569</td>
</tr>
<tr>
<td>34.2.4 Agent Language and Communication for Cooperation</td>
<td>573</td>
</tr>
<tr>
<td>35 A WisTech Approach to CSE</td>
<td>579</td>
</tr>
<tr>
<td>35.1 Main Objectives for WisTech Approach to Frameworks for CSE</td>
<td>579</td>
</tr>
<tr>
<td>35.2 CSE Projects for the Generation of New AI Technologies</td>
<td>581</td>
</tr>
<tr>
<td>35.3 C-granular Fire and Rescue Operations: A WisTech Approach to an Intelligent Commander’s Remote Control</td>
<td>585</td>
</tr>
<tr>
<td>36 Conclusions and Future Research</td>
<td>587</td>
</tr>
<tr>
<td>36.1 Conclusions</td>
<td>587</td>
</tr>
<tr>
<td>36.2 Future Research</td>
<td>601</td>
</tr>
<tr>
<td>Appendix A: Principle of Anchoring a Project in Top Management—Examples of Detailed Principles</td>
<td>603</td>
</tr>
<tr>
<td>Appendix B: Principle of Providing a Proper Role of the Human Factor in Management—Examples of Detailed Principles</td>
<td>605</td>
</tr>
<tr>
<td>Appendix C: Principle of Providing a Proper Level of Communication—Examples of Detailed Principles</td>
<td>607</td>
</tr>
<tr>
<td>Appendix D: IV&V Team—Examples of Detailed Principles</td>
<td>611</td>
</tr>
<tr>
<td>Appendix E: Principle of an Appropriate Document Management—Examples of Detailed Principles</td>
<td>613</td>
</tr>
<tr>
<td>Appendix F: Examples of Basic Principles of CSE Project Development (BPCD)</td>
<td>617</td>
</tr>
<tr>
<td>Appendix G: Criteria for the Optimization of a Family of Currently Used Principles—Examples</td>
<td>623</td>
</tr>
<tr>
<td>References</td>
<td>625</td>
</tr>
<tr>
<td>Index</td>
<td>647</td>
</tr>
</tbody>
</table>
Interactive Granular Computations in Networks and Systems Engineering: A Practical Perspective
Jankowski, A.
2017, XLIII, 654 p. 137 illus., 102 illus. in color., Hardcover
ISBN: 978-3-319-57626-8