Contents

1 Database and Graph Theory .. 1
 1.1 Graph as a Space of Entity Attributes as Sink, Source, and Transit .. 3
 1.2 Derivative, Variation and Chain by the Reference e₁ and e₂ 10

2 Crossover and Permutation .. 13
 2.1 Right Product RA ... 15
 2.2 Left Product AR ... 17

3 Similarity Between Graphs in Database by Permutations 19

4 Morphogenetic and Morpheme Network to Structured Worlds 23
 4.1 Morpheme Networks ... 23
 4.2 Loop and General Similarity and Conflicts and Inconsistency in Graph Space 26
 4.3 Vector Representation of Graph Inconsistency 26
 4.4 From Inconsistent to Consistent Data by Map Reduction in Big Data ... 32
 4.5 Simple Electrical Circuit as Database Graph Structure 33

5 Formal Description and References in Graph Theory 39
 5.1 Formal Description of Relationships 39
 5.2 Topological Inconsistency .. 46
 5.3 Inconsistency in Crystal Structure 47

6 Logic of Conflicts and Active Set with Uncertainty and Incoherence ... 51
 6.1 Agents and Logic in the Epistemic Logic 52
 6.2 Concepts and Definitions of Active Set 53
 6.3 Properties and Definition of the Active Set 53
6.4 Aggregation Rule for Active Set .. 58
6.5 Fuzzy Set by Active Set ... 58
6.6 Theory of Inconsistent Graph and Active Set 61

7 Cycles, Sinks, Sources and Links Products 65
7.1 Study of Sink Property .. 68
7.2 Study of Source Property .. 69
7.3 Both Sink and Source .. 70
7.4 Cycle in the Database .. 70
7.5 Graph as a Space with Reference 73
7.6 External Product .. 75
7.7 Internal Product for Multidimensional Many Sources, and Many Sinks Space .. 79
7.8 Segment Type, Surface Type, Volume Type and Others in Graphs .. 79
7.9 Orthogonality .. 84
7.10 Multidimensional Graph Space ... 87

8 A New Interpretation of the Determinant as Volume and Entropy .. 93
8.1 De Bruijn Graph Evolution by Skew Product 104

9 Morphogenetic Computing in Genetic Algorithms 107
9.1 Projection Instrument as Formal Sink Source Change with Invariance .. 107
9.1.1 Mophogenetic Transformation .. 107
9.1.2 Inverse Problem in Systems with Different Numbers of Inputs and Outputs .. 108
9.2 Geometric Image of the Pseudo-Inverse 112
9.3 Simple Genetic Algorithm Subject to Constraint [22, 23, 25, 26, 35] .. 116
9.3.1 Genetic Selection Algorithm in Two Dimensional State Subject to Normalize Constraint .. 116
9.3.2 Three Dimension Selection Evolution Subject to the Normalize Constraint .. 123
9.4 Selection, Mutation and Crossover Evolution Subject to the Normalize Constraint and Initial Probability Constraint 127
9.5 Beyond the Normalized Constraint 131
9.6 Conclusion ... 132

10 Neural Morphogenetic Computing and One Step Method 133
10.1 One Step Back Propagation to Design Neural Network 133
10.2 Supervised Neural Network by Projection Method [17–19, 21] .. 135
10.3 Conflict Situation in Supervised Neural Network with Compensation .. 137
10.4 Evolvability and One Step Method in Neural Network. 148
10.5 Associative Memory by One Step Method [5] 155
10.6 Hopfield Neural Network and Morphogenetic Computing
 as One Step Method [7] .. 160
10.7 Kohonen Self Organizing Maps by Morphogenetic
 Computing [1–3] .. 162
10.8 Morphogenetic Computing Learning with Noising
 to Learn Patterns and Retrieve Patterns 166
10.9 Conclusion .. 168

References .. 171
Introduction to Morphogenetic Computing
Resconi, G.; Xu, X.; Xu, G.
2017, IX, 172 p. 145 illus., Hardcover
ISBN: 978-3-319-57614-5