B-spline An abbreviation of basis spline, introduced in Schoenberg (1967): A chain of polynomials of fixed degree (usually cubic functions are used) ordered in such a way that they are continuous at the points at which they join (knots). The knots are usually placed at the \(x \)-coordinates of the data points. The function is fitted in such a way that it has continuous first- and second-derivatives at the knots; the second derivative can be set to zero at the first and last data points. Splines were first described by the Romanian-American mathematician, Isaac Jacob Schoenberg (1903–1990) (Schoenberg 1946, 1971). Other types include: quadratic, cubic and bicubic splines (Ahlberg et al. 1967). Jupp (1976) described an early application of B-splines in geophysics. See also: piecewise function, spline, smoothing spline regression.

Back Projection Tomography (BPT) An early method used in seismic tomography. It has its origins in the work of the Australian-born American physicist, radio astronomer and electrical engineer, Robert Newbold Bracewell (1921–2007) who showed theoretically (Bracewell 1956) how an image of a celestial body (e.g. the brightness distribution over the Sun) could be obtained by “line integration” of the observations obtained by a narrow beam sweeping across it. In exploration seismology, the aim is to determine the velocity structure in a region which has been sampled with a set of rays. In the basic back projection tomography approach (Aki et al. 1977), a reference velocity structure (e.g. a laterally-averaged plane-layer model for the region studied) is assumed, and deviations from the travel times are inverted to obtain the slowness (i.e. reciprocal velocity) perturbations of the blocks. Only the assumed velocity structure is used to guide the ray’s path. The least squares solution to the problem is found by solving the normal equations \(L^T L s = L^T t \), where \(t = Ls \). \(t \) are the time delays, \(s \) are the slowness perturbations associated with the blocks, \(L \) is an \(N \) by \(M \) matrix of lengths (\(l \)) of the ray segments associated with each block, \(N \) are the number of travel-time data, and \(M \) are the number of blocks in the model. Because
most of the blocks are not hit by any given ray, the majority of the elements of \(L \) are zero. Considering only the diagonal of \(L^T L \), \(s = D^{-1} L^T t \), where \(D = \text{diag}(L^T L) \), each ray is projected back from its receiver, one at a time. For each block encountered, the contributions to the sums of \(tl \) and \(t^2 \) are accumulated separately. Once all the rays have been back-projected, each block's slowness is estimated using \(s = \Sigma tl / \Sigma t^2 \). The method is fast, but provides rather blurred results (Humphreys and Clayton 1988). This problem can be overcome using techniques which iterate on the basis of the travel-time residuals, such as the \textit{Algebraic Reconstruction Technique} and the \textit{Simultaneous Iterative Reconstruction Technique}.

Background

1. In geophysics: The \textbf{average} systematic or \textbf{random noise} level of a time-varying \textbf{waveform} upon which a desired \textbf{signal} is superimposed (Dyk and Eisler 1951; Sheriff 1984).

2. In exploration geochemistry: a \textbf{range} of values above which the magnitude of the concentration of a geochemical element is considered to be \textbf{“anomalous.”} The term was adopted following the work of the pioneering American geochemist, Herbert Edwin Hawkes (1912–1996) (Hawkes 1957). See recent discussion by Reimann et al. (2005).

3. In computing, a \textbf{background process} is one which does not require operator intervention but can be run by a \textbf{computer} while the workstation is used to do other work (International Business Machines [undated]). See also: \textbf{anomaly}.

\textbf{Backward elimination} A method of \textbf{subset selection} used in both \textbf{multiple regression} and \textbf{classification (discriminant analysis)} in which there may be a very large number \((N)\) of potential predictors, some of which may be better than others. \textbf{Backward elimination} begins with all \(N\) predictors; each one is temporarily eliminated at a time, then the best-performing subset of the remaining \((N - 1)\) predictors is retained. Selection stops when no further improvement in the \textbf{regression} fit or classification success rate is obtained. See Berk (1978), and in an earth science context, Howarth (1973a).
BALGOL An acronym for “Burroughs ALGOL.” ALGOL is itself an acronym for Algorithmic Oriented Language, a computer programming language originally developed by a group of European and American computer scientists at a meeting in Zurich in 1958 (Perlis and Samelson 1958). It was subsequently refined and popularised as ALGOL-60 (Naur 1960), assisted by the work of the computer scientists, Edsger Wybe Dijkstra (1930–2002) and Jaap A. Zonneveld (1924–) in the Netherlands; and (Sir) Charles Antony Richard Hoare (1934–), then working with the computer manufacturers, Elliott Brothers, in England. Later variants used in geological studies included BALGOL, developed by the Burroughs Corporation in the USA. Early examples of its use in the earth sciences include Harbaugh (1963, 1964) and Sackin et al. (1965), but it was soon replaced by programming in FORTRAN.

Band A range of frequencies such as those passed (band-pass) or rejected (band-reject) by a filter. Electrical low-pass, high-pass and band-pass “wave filters” were initially conceived by the American mathematician and telecommunications engineer, George Ashley Campbell (1870–1954) between 1903 and 1910, working with colleagues, physicist, Otto Julius Zobel (1887–1970) and mathematician Hendrick Wade Bode (1905–1982), but the work was not published until some years later (Campbell 1922; Zobel 1923a, 1923b, 1923c; Bode 1934). The term band pass was subsequently used in Stewart (1923) and Peacock (1924); see also: Wiggins (1966) and Steber (1967). See: frequency selective-filter.

Band-limited function A function whose Fourier transform vanishes, or is very small, outside some finite interval, i.e. band of frequencies. The term was introduced into digital signal processing by the American statistician, John Wilder Tukey (1915–2000) and communications engineer, Ralph Beebe Blackman (1904–1990) (Blackman and Tukey 1958). For discussion in a geophysical context, see: Grillot (1975) and Boatwright (1978).

Band-pass filter Filters are algorithms for selectively removing noise from a time series (or spatial set of data), smoothing, or for enhancing particular components of the signal by removing components that are not wanted. A band-pass filter attenuates all frequencies except those in a given range between two given cut-off frequencies and may also be applied to smoothing of a periodogram. A low-pass filter and a high-pass filter connected in series is one form of a band-pass filter. Information in the passband frequencies are treated as signal, and those in the stopband are treated as unwanted and rejected by the filter. There will always be a narrow frequency interval, known as the transition band, between the passband and stopband in which the relative gain of the passed signal decreases to its near-zero values in the stopband. Electrical low-pass, high-pass and band-pass “wave filters” were initially conceived by the American mathematician and telecommunications engineer, George Ashley Campbell (1870–1954) between 1903 and 1910, working with colleagues, physicist, Otto Julius Zobel (1887–1970) and mathematician Hendrick Wade Bode (1905–1982), but the work was not published until some
years later (Campbell 1922; Zobel 1923a, 1923b, 1923c; Bode 1934). Equivalent filters were introduced into digital signal processing by the American statistician, John Wilder Tukey (1915–2000) and mathematician Richard Wesley Hamming (1915–1998) (Tukey and Hamming 1949). Parallel theoretical background was provided by the work of the American physicist, George W. Steward (1876–1956), who worked on acoustics between 1903 and 1926 and solved the fundamental wave equations involved in acoustic filter design (Crandall 1926; Stewart 1923). See Buttkus (1991, 2000), Camina and Janacek (1984), Gubbins (2004) and Vistelius (1961) for discussion in an earth sciences context.

Band-reject filter, band-stop filter A filter which is designed to remove (reject) a narrow band of frequencies in a signal while passing all others. It is also known as a notch or rejection filter (Sherriff 1984; Wood 1968; Buttkus 2000; Gubbins 2004). The opposite of a band-pass filter. See: Steber (1967) and Ulrych et al. (1973).

Banded equation solution This refers to the solution of a system of linear equations involving a square symmetric matrix in which the band referred to is a symmetrical area on either side of, and parallel to, the matrix diagonal which itself contains nonzero values. Outside this band, all entries are zero. See: Segui (1973), Carr (1990) and Carr and Myers (1990).

Bandwidth

1. The width of the passband of a frequency selective-filter; the term was introduced into digital signal processing by the American statistician, John Wilder Tukey (1915–2000) and mathematician Richard Wesley Hamming (1915–1998) (Tukey and Hamming 1949).

Bandwidth retention factor A criterion used in normalizing the taper coefficients in designing a multitaper filter, it is the ratio: (energy within the chosen spectral frequency band)/(energy in the entire band). It was called the bandwidth retention factor by Park et al. (1987). See: multi-tapering method.

Bar chart A graph in which either the absolute frequency or relative frequency of occurrence of a category is shown by the proportional-length of a vertical bar for each category in a data set. Since they are categorical variables, ideally, the side-by-side bars should be drawn with a gap between them. Not to be confused with a histogram, which
shows the binned frequency distribution for a continuous- or discrete-valued variable. The earliest bar chart, based on absolute amount, was published by the English econometrician, William Playfair (1759–1823) (Playfair and Corry 1786). An early earth science use was by Federov (1902) to show relative mineral birefringences. In a divided bar chart, each bar is divided vertically into a number of proportional-width zones to illustrate the relative proportions of various components in a given sample; total bar-length may be constant (e.g. 100% composition) or vary, depending on the type of graph. These were first used by the German scientist, Alexander von Humboldt (1769–1859) (Humboldt 1811). In geology, divided bars were first used by the Norwegian geologist, metallurgist and experimental petrologist, Johan Herman Lie V ogt (1858–1932) (V ogt 1903–1904). The Collins (1923) bar chart uses double divided bars to show the cationic and anionic compositions of a water sample separately; each set is recalculated to sum to 100% and plotted in the left- and right-hand bars respectively. Usage in geology increased following publication of Krumbein and Pettijohn’s Manual of sedimentary petrography (1938).

Bartlett method, Bartlett spectrum, Bartlett taper, Bartlett window, Bartlett weighting function Named for the British statistician, Maurice Stevenson Bartlett (1910–2002) who first estimated the power spectrum density of a time series, by dividing the data into a number of contiguous non-overlapping segments, calculating a periodogram for each (after detrending and tapering), and calculating the average of them (Bartlett 1948, 1950). The term Bartlett window (occasionally misspelt in recent literature as the “Bartlet” window), was introduced into digital signal processing by the American statistician, John Wilder Tukey (1915–2000) and communications engineer, Ralph Beebe Blackman (1904–1990) (Blackman and Tukey 1958) and has remained the most frequently used term since the mid-1970s (Google Research 2012). It is used in the operation of smoothing a periodogram with a lag window of weights applied to a discrete time waveform. N, the width of the Bartlett window, is typically even and an integer power of 2, e.g. 2, 4, 8, 16, 32, etc.; for each point, n = 0, ..., N, the weight w(n) is given by

\[w(n) = \frac{2n}{N-1}; 0 \leq n \leq \left(\frac{N}{2}\right) - 1 \]

and

\[w(n) = 2 - \frac{2n}{N-1}; \frac{N}{2} \leq n < N; \]

otherwise zero. It is also known (Harris 1978) as the triangle, triangular, or Fejér window, named for the Hungarian mathematician, Lipót Fejér (1880–1959) (Fejér 1904). See also Blackman and Tukey (1958) and, for a comprehensive survey, Harris (1978). Mentioned in an earth science context by: Buttkus (1991, 2000) and Weedon (2003). See also: spectral window.
Barycentric coordinates The percentage-based coordinate system used today in an equilateral ternary diagram is equivalent to the barycentric coordinate system introduced by the German mathematician, August Ferdinand Möbius (1790–1886) (Möbius 1827). Imagine three masses w_A, w_B and w_C, placed at the apices A, B, C of a triangle and all joined by threads to an interior point P at equilibrium, then the areas of the subtriangles $BPC = a$, $APC = b$ and $APB = c$ are proportional to w_C, w_B and w_A respectively. The barycentric coordinates \{a, b, c\} may be normalised so that $a + b + c = 1$. However, Möbius never seems to have used the idea as the basis for a graphical tool.

BASIC Acronym for Beginner’s All-purpose Symbolic Instruction Code, a general-purpose interactive computer programming language (i.e. interpreted on the fly, rather than compiled and run) originally developed in 1963–1964 by American mathematicians and computer scientists, John George Kemeny (1926–1992), and Thomas Eugene Kurtz (1928–) at Dartmouth College, New Hampshire, USA, as a teaching tool for non-scientist undergraduates (Kemeny and Kurtz 1964). It was partly based on FORTRAN II and ALGOL, with additions to make it suitable for timesharing use. Because of its ease of use, it was subsequently adopted for use on minicomputers, such as the DEC PDP series, Data General and Hewlett Packard in the late 1960s and early 1970s, but it was the development of BASIC interpreters by Paul Allen (1953–) and William Henry Gates III (1955–), co-founders of Microsoft, and Monte Davidoff (1956–) for the Altair and Apple computers, and its subsequent take-up in many other dialects by other manufacturers which popularised its use in the personal-computing environment of the 1980s. Early applications in the earth sciences include: Till et al. (1971), McCann and Till (1973) and Jeremiasson (1976).

Basin analysis The quantitative modelling of the behaviour of sedimentary basins through time has become an important tool in studying the probable hydrocarbon potential of a basin as an aid to exploration. Modelling generally embraces factors such as basement subsidence, compaction and fluid flow, burial history, thermal history, thermal maturation, and hydrocarbon generation, migration and accumulation. The aim is to determine the relative timing of hydrocarbon evolution in relation to the development of traps and their seals, and the continuing integrity of the sealed traps following petroleum entrapment. The methods used have been largely developed by the British-American physicist, theoretical astronomer, and geophysicist, Ian Lerche (1941–); see: Lerche (1990, 1992), Dore et al. (1993), Harff and Merriam (1993) and Lerche et al. (1998).

Basin of attraction A region in phase space in which solutions for the behaviour of a dynamical system approach a particular fixed point; the set of initial conditions gives rise to trajectories which approach the attractor as time approaches infinity. The term was introduced by the French topologist, René Thom (1923–2002) in the late 1960s and published in Thom (1972, 1975). For discussion in an earth science context, see Turcotte (1997). See also: phase map.
Basis function, basis vector

1. An element of a particular basis (a set of vectors that, in a linear combination, can represent every vector in a given vector space, such that no element of the set can be represented as a linear combination of the others) for a function space (a set of functions of a given kind). Basis function has been the most frequently used spelling since the 1980s (Google Research 2012). Examples include the sine and cosine functions which make up a Fourier series, Legendre polynomials, and splines.

2. Algorithms which form the basis for numerical modelling and for methods of approximation (Sheriff 1984; Gubbins 2004)

Batch processing The execution of a series of “jobs” (programs) on a computer, established so that they can all be run to completion without manual intervention. Used on mainframe computers since the 1950s, it ensures the maximum level of usage of the computer facilities by many users. Early examples of geological programs for such an environment are those of Krumbein and Sloss (1958), Whitten (1963) and Kaesler et al. (1963). By the 1970s, “time-shared” operations enabled input/output via remote Teletype terminals which offered both keyboard and punched paper-tape readers as means of input and, in the latter case, output also. An early example of a suite of statistical computer programs for geological usage written for a time-sharing environment is that of Koch et al. (1972).

Batch sampling

1. An alternative name for channel sampling, a means of physical sampling in a mine environment in which a slot, or channel, of given length is cut into the rock face in a given alignment (generally from top to bottom of the bed, orthogonal to the bedding plane); all the rock fragments broken out of the slot constitute the sample.

2. In statistical sampling, it is a method used to reduce the volume of a long data series: the arithmetic mean of all the values in a fixed non-overlapping sampling interval is determined and that value constitutes the channel sample. See: Krumbein and Pettijohn (1938) and Krumbein and Graybill (1965); composite sample.

Baud In asynchronous transmission, the unit of modulation rate corresponding to one unit interval per second; e.g. if the duration of the interval is 20 ms, the modulation rate is 50 baud (International Business Machines [undated])

Bayes rule, Bayesian methods Given a prior frequency distribution of known (or sometimes assumed) functional form for the occurrence of the event, the posterior frequency distribution is given by Bayes' rule, named after the English philosopher and mathematician, Thomas Bayes (1702–1761). Expressed in modern notation as:
\[p(S|X) = \frac{[p(X|S)p(S)]}{\{[p(x_1|S)p(S)] + [p(x_2|S)p(S)] + \cdots + [p(x_n|S)p(S)]\}}, \]

where \(p(S|X) \) is the posterior distribution of a given state (or model parameters) \(S \) occurring, given a vector of observations, \(X \); \(p(S) \) is the prior distribution; and \(p(x|S) \) is the likelihood. However, this “rule” does not appear in Bayes (1763); John Aldrich in Miller (2015a) gives the first use of the term “la règle de Bayes” to Cournot (1843) but attributes its origin to Laplace (1814). The term Bayesian was first used by the British statistician, (Sir) Ronald Alymer Fisher (1890–1962) in Fisher (1950). See: Wrinch and Jeffreys (1919) and, in an earth science context: Appendix B in Jeffreys (1924), also: Rendu (1976), Vistelius (1980, 1992), Christakos (1990), Curl (1998), Solow (2001) and Rostirolla et al. (2003); Bayesian inversion, Bayesian/maximum-entropy method.

Bayesian inversion The application of Bayesian methods to solution of inverse problems (e.g. the reconstruction of a two-dimensional cross-sectional image of the interior of an object from a set of measurements made round its periphery). For discussion in an earth science context, see: Scales and Snieder (1997), Oh and Kwon (2001), Spichak and Sizov (2006), Hannisdal (2007), Gunning and Glinsky (2007) and Cardiff and Kitandis (2009).

Bayesian/Maximum-Entropy (BME) method A methodological approach to the incorporation of prior information in an optimal manner in the context of spatial and spatio-temporal random fields: given measurements of a physical variable at a limited number of positions in space, the aim is to obtain estimates of the variable which are most likely to occur at unknown positions in space, subject to the a priori information about the spatial variability characteristics. Introduced by the Greek-born American environmental scientist and statistician, George Christakos (1956–), Christakos (1990, 2000). See also: Bayes rule, maximum entropy principle.

Beach ball plot Given a population of compatible measurements of the characteristics of geological faults, determining the proportion of points in compression or extension in each direction enables the three orthogonal principal stress axes (\(\sigma_1, \sigma_2 \) and \(\sigma_3 \)) to be located. The method involves placing a plane perpendicular to the plane of movement in a fault; dividing the fault into a set of 4 dihedra or quadrants. Two will be in compression (+) and two will be in extension (−). \(\sigma_1 \) and \(\sigma_3 \) will lie somewhere between the dihedra; if the directions of \(\sigma_1 \) and \(\sigma_3 \) can be determined, then the remaining stress axis, \(\sigma_2 \), can be calculated from them, as it must be perpendicular to them both, or normal to the plane they define. \(\sigma_1 \) will lie somewhere in the area of compression and \(\sigma_3 \) will lie somewhere in the area of extension. As faults are rarely isolated, other faults in the fault system can also be plotted on a Lambert equal area projection. As increasing numbers are plotted, a direction for \(\sigma_1 \) and \(\sigma_2 \) representing the entire fault system may be determined. The two compressional right dihedra and two extensional right dihedra shown on the graph may be
coloured white and black respectively, leading to its being called a beach ball plot. Introduced by the French structural geologist, Jacques Angelier (1947–2010) and geophysicist, Pierre Mechler (1937–) (Angelier and Mechler 1977) when it was known as an Angelier-Mechler diagram. Their method was improved on by the British structural geologist, Richard J. Lisle (1987, 1988, 1992).

Beat If two *sinusoids* of similar *wavelengths* are added together, the resultant *waveform* will have constant *wavelength* (equal to the *average* of the wavelengths of the two sinusoids), but the *amplitude* of the resulting waveform, the *beat*, will vary in a fixed manner which will be repeated over the *beat wavelength*. The term originally derives from the acoustics of music, and was used (battement) by the French mathematician and physicist, Joseph Sauveur (1653–1716) (Sauveur [1701] 1743); by 1909 it was in use in wireless telegraphy, first patented by Italian physicist, Guglielmo Marconi (1874–1937) in 1896. Mentioned in an earth science context by Panza (1976) and Weedon (2003). See also: amplitude modulation.

Belyaev dichotomy Named for the Russian statistician, Yuri Konstantinovich Belyaev (1932–), who proved (Belyaev 1961, 1972) that with a *probability* of one, a stationary *Gaussian process* in one *dimension* either has continuous *sample paths*, or else almost all its paths are unbounded in all intervals. The implication for a *Gaussian random field* is that if it is smooth it is very smooth, but if it is irregular, it is highly irregular and there is *no* in-between state. This concept was applied to the topography of a soil-covered landscape by the British theoretical geomorphologist and mathematician, William Edward Herbert Culling (1928–1988) in Culling and Datko (1987) and Culling (1989) who used it to justify the view that the *fractal* nature of a landscape renders “the customary geomorphic stance of phenomenological measurement, naïve averaging and mapping by continuous contours” both “inappropriate” and “inadmissible” (Culling 1989).

Bell-curve, bell-shaped curve, bell-shaped distribution An informal descriptive name for the *shape* described by a continuous *Gaussian* (“normal”) *frequency distribution*. John Aldrich in Miller (2015a) says that although the term “bell-shaped curve” appears in Francis Galton’s description of his Apparatus affording Physical Illustration of the action of the Law of Error or of Dispersion: “Shot are caused to run through a narrow opening among pins fixed in the face of an inclined plane, like teeth in a harrow, so that each time a shot passes between any two pins it is compelled to roll against another pin in the row immediately below, to one side or other of which it must pass, and, as the arrangement is strictly symmetrical, there is an equal chance of either event. The effect of subjecting each shot to this succession of alternative courses is, to disperse the stream of shot during its downward course under conditions identical with those supposed by the hypothesis on which the law of error is commonly founded. Consequently, when the shot have reached the bottom of the tray, where long narrow compartments are arranged to receive them, the general outline of the mass of shot there collected is always found to assimilate to the well-
known bell-shaped curve, by which the law of error or of dispersion is mathematically expressed,” Galton demonstrated his apparatus at a meeting of the Royal Institution in February 1874 (Committee of Council on Education 1876), but did not actually use the term in his many statistical publications. Nevertheless, the term began to be used in the early 1900s and by Thompson (1920), but it gained in popularity following its appearance in textbooks, such as Uspensky (1937) and Feller (1950).

Bending power law spectrum An energy spectrum which is a modification of the linear \((1/f)\) power law spectrum \((f\) is frequency\) which includes an element enabling to bend downwards, steepen, at high frequencies: It has the form:

\[
E(f) = \frac{Nf^{-c}}{1 + \left(\frac{f}{f_B}\right)^{d-c}}
\]

where \(N\) is a factor which sets the amplitude, \(f_B\) is the frequency at which the bend occurs, and \(c\) (usually in the range 0 to 1) and \(d\) (usually in the range 1 to 4) are constants which govern the slope of the spectrum above and below the bend. Vaughan et al. (2011) discuss the problems inherent in choice of a first-order autoregressive, AR(1), process as a model for the spectrum in cyclostratigraphy and recommend use of the power law, bending power law or Lorentzian power law models as alternatives. See also power spectrum.

Bernoulli model, Bernoulli variable A Bernoulli random variable is a binary variable for which the probability that e.g. a species is present at a site, \(\Pr(X = 1) = p\) and the probability that it is not present, \(\Pr(X = 0) = 1 - p\). Named for the Swiss mathematician, Jacques or Jacob Bernoulli (1654–1705), whose book, *Ars Conjectandi* (1713), was an important contribution to the early development of probability theory. A statistical model using a variable of this type has been referred to since the 1960s as a Bernoulli model (Soal 1965; Merrill and Guber 1982).

Bernstein distribution A family of probability distributions of the form

\[
F(x; m) = \Phi\left\{\frac{(x - m)}{\sqrt{f(x)}}\right\},
\]

where \(\Phi\{\bullet\}\) is the normal distribution; \(m\) is the median; and \(f(x)\) is a polynomial function in \(x\), (e.g. \(ax^2 - 2bx + c\); where \(a\), \(b\), and \(c\) are constants), whose value is greater than zero for all \(x\). Introduced by the Russian mathematician, Sergei Natanovich Bernštejn (1880–1968) (Bernštejn 1926a, b; Gertsbakh and Kordonsky 1969); for discussion in an earth science context, see Vistelius (1980, 1992).
Bessel function A set of functions that are solutions to Laplace’s equation in cylindrical polar coordinates. Named (Lommel 1868) for the German astronomer and mathematician, Friedrich Wilhelm Bessel (1784–1846). The first spherical Bessel function is the same as the unnormalised sinc function, i.e. \(\sin(x)/x \). Mentioned in an earth science context by Buttkus (1991, 2000).

Best Linear Unbiased Estimator (BLUE) A linear estimator of a parameter which has a smaller variance associated with it than any other estimator, and which is also unbiased, e.g. the ordinary least squares estimator of the coefficients in the case of fitting a linear regression equation, as shown by the French mathematician, Pierre Simon, Marquis de Laplace (1749–1827), (Laplace 1812, p. 326), or the use of “ordinary” kriging to estimate concentration values for spatially distributed data in applied geostatistics (Journel and Huijbregts 1978; Isaaks and Srivastava 1989).

Beta diagram Introduced by the Austrian structural geologist, Bruno Sander (1884–1979) (Sander 1948; Sander 1970), the \(\beta \)-axis is the line of intersection between two or more planes distinguished by a parallel fabric (e.g. bedding planes, foliation planes). If the attitudes of these planes in a folded structure are plotted in cyclographic form on a stereographic projection, the unimodal ensemble of intersections statistically defines the location of the mean \(\beta \)-axis, which may correspond to a cylindrical fold axis (in certain types of complex folding they may not represent a true direction of folding). Also called a pole diagram. See: Turner and Weiss (1963), Robinson (1963) and Ramsay (1964, 1967).

Beta distribution, Beta function A family of continuous probability distributions of the form

\[
f(x) = \frac{x^{\alpha-1}(1-x)^{\beta-1}}{B(\alpha, \beta)},
\]

where \(0 < x < 1, 0 < \alpha, \beta < \infty \) and \(B(\alpha, \beta) \) is the Beta function: \(B(\alpha, \beta) = \int_0^1 u^{\alpha-1} (1-u)^{\beta-1} \, du \), first studied by the Swiss mathematician, Leonhard Euler (1707–1783) (Euler 1768–1794), and by the French mathematician, Pierre Simon, Marquis de Laplace (1749–1827), (Laplace 1774). Subsequently given its name by the French mathematician, Jacques Phillippe Marie Binet (1776–1856) (Binet 1839). The distribution is J-shaped if \(\alpha \) or \(\beta \) lie between 0 and 1, and U-shaped if both are within this range. Otherwise, if \(\alpha \) and \(\beta \) are both greater than 1, then it is unimodal with the peak of the distribution (mode) falling at \((\alpha - 1)/(\alpha + \beta - 2) \). It is frequently used to fit data on a finite interval and has been applied to the modelling of the proportions of microlithotype data in coal (Cameron and Hunt 1985). A Beta distribution scaled to the observed maxima and minima is known as a
stretched Beta distribution, which is now being used for distribution-fitting in petroleum resource estimation studies (Senger et al. 2010). See also incomplete Beta function.

Beta test To test a pre-release version of a piece of software by making it available to selected users (International Business Machines [undated]).

Bias, biased

1. In statistical terms, bias is the difference between the estimated value of a parameter, or set of parameters, and the true (but generally unknown) value. The terms biased and unbiased errors were introduced by the British econometrician, (Sir) Arthur Lyon Bowley (1869–1957) (Bowley 1897). Typically, the estimated value might be inflated by erroneous observations or the presence of an outlier, or outliers, in the data. In time series analysis, it may be applied to the incorrect estimation of the periodogram as a result of the leakage effect. For discussion in an earth science context, see: Miller and Kahn (1962), Buttkus (1991, 2000) and Weedon (2003).

2. In geochemical analysis, or similar measurement processes, it is the difference between a test result (or the mean of a set of test results) and the accepted reference value (Analytical Methods Committee 2003). In practice, it is equivalent to systematic error. In analytical (chemical) work, the magnitude of the bias is established using a standard reference material, and it is generally attributable to instrumental interference and/or incomplete recovery of the analyte. See also: accuracy, precision, inaccuracy, blank.

Bicoherence This is a measure of the proportion of the signal energy at any bifrequency that is quadratically phase-coupled. Nonlinear frequency modulation of a signal will be indicated by the presence of phase- and frequency-coupling at the frequencies corresponding to the sidebands, e.g. where a signal is composed of three cosinusoids with frequencies $f_1, f_2,$ and $f_1 + f_2$ and phases ϕ_1, ϕ_2 and $\phi_1 + \phi_2$. This will be revealed by peaks in the bicoherence, a squared normalised version of the bispectrum of the time series, $B(f_1, f_2)$:

$$b(f_1, f_2) = \frac{|B(f_1, f_2)|^2}{E[|P(f_1)P(f_2)|^2] E[|P(f_1 + f_2)|^2]}$$

plotted as a function of f_1 and f_2; where $P(f)$ is the complex Fourier transform of the time series at frequency f; and $E(*)$ is the expectation operator. The term was introduced into digital signal processing by the American statistician, John Wilder Tukey (1915–2000) about 1953 (Brillinger 1991; Tukey 1953). See also: Brillinger (1965), Brillinger and Rosenblatt (1967a, b) and Brillinger and Tukey (1985); discussed in an earth science context by: Elgar and Sebert (1989), Mendel (1991), Nikias and Petropulu (1993), Persson (2003) and Weedon (2003).
Bicubic spline A chain of polynomials of fixed degree (usually cubic functions are used) in such a way that they are continuous at the points at which they join (knots). The knots are usually placed at the \(x \)-coordinates of the data points. The function is fitted in such a way that it has continuous first and second derivatives at the knots; the second derivative can be set to zero at the first and last data points. Splines were discovered by the Romanian-American mathematician, Isaac Jacob Schoenberg (1903–1990) (Schoenberg 1946). See also: Schoenberg (1971), Ahlberg et al. (1967) and Davis and David (1980); smoothing spline regression, spline, piecewise function.

Bifrequency A reference to two frequencies of a single signal. The term was introduced into digital signal processing by the American statistician, John Wilder Tukey (1915–2000) (Brillinger 1991; Tukey 1953). See: bicoherence, bispectrum.

Bifurcation A sudden change in the behaviour of a dynamical system when a control parameter \((p) \) is varied, resulting in a period-doubling, quadrupling, etc. with the onset of chaos. A system of behaviour that previously exhibited only one mode, which subsequently exhibits 2, 4, etc. It shows on a logistic map as a splitting of the trace made by the variable representing the behaviour of the system when plotted as a function of \(p \); the splitting becomes more and more frequent, at progressively shorter intervals, as \(p \) increases in magnitude. The term was coined by the French mathematical physicist and mathematician, Jules Henri Poincaré (1854–1912) (Poincaré 1885, 1902) but was first used in this context by the Austrian-born German mathematician, Eberhard Frederick Ferdinand Hopf (1902–1983) (Hopf 1942; Howard and Kopell 1976), and the Russian mathematician, Lev Davidovich Landau (1908–1968) (Landau 1944). For earth science discussion see: Turcotte (1997) and Quin et al. (2006). See also: Andronov-Hopf bifurcation, period-doubling bifurcation, pitchfork bifurcation.

Bi-Gaussian approach A method of geostatistical estimation (Marcotte and David 1985) in which the conditioning is based on the simple kriging estimate of the mean value of the Gaussian variable representing the grades of a point, or block, rather than the actual data values. See also: multi-Gaussian approach.

Bilinear interpolation A two-dimensional interpolation method in which values are first interpolated in one direction and then in the orthogonal direction. It was originally used for interpolation in tables, e.g. Wilk et al. (1962). Konikow and Bredehoeft (1978) used the method in computing solute transport in groundwater, and Sheriff (1984) gives the example of first interpolating in time between picks at velocity analysis points and then spatially between velocity analysis positions.

Bilinear mapping, bilinear transform A stability-preserving transform used in digital signal processing to transform continuous-time system representations (analogue signal) to discrete-time (digital signal) and vice versa. It is often used in the design of digital

Billings net This graphical net (a Lambert equal-area (polar) projection of the sphere) is used as an aid to plotting structural data (e.g. poles to joint planes). Named for the American structural geologist, Marland Pratt Billings (1902–1996), whose textbook (Billings 1942) greatly helped to promote its use in analysis of geological structures. This seems a little surprising, as the stereographic net, which appeared in the second edition (Billings 1954) is acknowledged by him as being reproduced from a paper by the American structural geologist, Walter Herman Bucher (1888–1965) (Bucher 1944). However, it was the Austrian mineralogist, Walter Schmidt (1885–1945) who was the first to adopt the use of the Lambert projection in petrofabric work in structural geology (Schmidt 1925), and it was first used in macroscopic structural work by Fischer (1930), but it was undoubtedly Billing's work which popularised its use in macro-scale structural geology (Howarth 1996b).

Bimodal distribution A variable with two local maxima in its probability density. Use of the term goes back to about 1900. The first attempt to decompose a bimodal distribution into two normally distributed components in the geological literature appears to be that of the British petrologist, William Alfred Richardson (1887–1965) who, in 1923, applied it to the frequency distribution of silica in igneous rocks (Richardson 1923), using the method of moments originally described by the British statistician, Karl Pearson (1857–1936) (Pearson 1894). Jones and James (1969) discuss the case of bimodal orientation data. See also: frequency distribution decomposition.

Bin

1. One of a set of fixed-interval divisions into which the range of a variable is divided so as to count its frequency distribution. The term is believed to have been first used by the British statistician, Karl Pearson (1857–1936) in his lectures at Gresham College, London, probably in 1892/1893 when he introduced the histogram (Bibby 1986).

2. Sherriff (1984) uses the term for one of a set of discrete areas into which a survey region is divided (it is also used in this sense in astronomical surveys).

Binary coefficient Statistical models for the analysis of binary-coded (presence/absence) data were reviewed by Cox (1970). Cheetham and Hazel (1969) review 22 similarity coefficients for such data in the literature, some of which are discussed in more detail by Sokal and Sneath (1963) and Hohn (1976); see also Hazel (1970) and Choi et al. (2010). Of these, the Dice coefficient, Jaccard coefficient, Otsuka coefficient, Simpson
Coefficient and simple matching coefficient were embodied in a FORTRAN program for biostratigraphical use by Millendorf et al. (1978).

Binary digit (bit) Usually known by its acronym bit, the term was coined by the American statistician, John Wilder Tukey (1915–2000) about 1946, because the two states of an element in a computer’s core can represent one digit in the binary representation of a number. It first appeared in print in an article by the American mathematician, Claude Elwood Shannon (1916–2001) (Shannon 1948), see also Koons and Lubkin (1949) and Shaw (1950). A series of 8 bits linked together are referred to as a byte (Buchholz 1981). It is mentioned in Davis and Sampson (1973).

Binary notation The representation of integer numbers in terms of powers of two, using only the digits 0 and 1. The position of the digits corresponds to the successive powers, e.g. in binary arithmetic: \(0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10\); decimal \(2 = 0010\), decimal \(3 = 0011\), decimal \(4 = 0100\), etc. and, e.g., decimal \(23 = \text{decimal } 16 + 4 + 2 + 1\), i.e. \(10000 + 00100 + 00010 + 00001 = 10111\) in binary notation. Although it has been asserted (Leibniz 1703, 1768) that binary arithmetic may have been used in the Chinese I-king [Book of permutations] which is believed to have been written by the Chinese mystic, Wên-wang (1182–1135 BC), it “has no historical foundation in the I-king as originally written” (Smith 1923–1925, I, 25). Binary arithmetic was discussed by the German mathematician and philosopher, Gottfried Wilhelm von Leibniz (1646–1716), (Leibniz 1703). In computing, the binary numbering system was used in a report (von Neumann 1945) on the EDVAC (Electronic Discrete Variable Automatic Computer), developed under J. Presper Eckert (1919–1995) and John Mauchly (1907–1980) at the Eckert-Mauchly Computer Corporation, USA, in 1946 and its successor, Binac (Binary Automatic Computer) (Eckert-Mauchly Computer Corp. 1949). Statistical models for the analysis of presence/absence data, often coded as \{1,0\} values, were reviewed by Cox (1970). Binary notation in an earth science context is discussed by Ramsayer and Bonham-Carter (1974), who consider the classification of petrographical and palaeontological data when represented by strings of binary variables. See also: Sheriff (1984) and Camina and Janacek (1984); binary coefficient.

Binary variable A variable which may take one of only two discrete values, e.g. the presence of a particular lithology in a map cell might be coded: absent = 0, present = 1. Statistical methods for the analysis of such data were reviewed by Cox (1970). See also: Ramsayer and Bonham-Carter (1974); binary coefficient.

Bingham distribution A spherical frequency distribution first studied by the American statistician, Christopher Bingham (1937–) in 1964, but only published some years later (Bingham 1964, 1974). It is the distribution of a trivariate vector of normal distributions, all with zero mean and an arbitrary covariance matrix, \(C\), given that the
length of the vector is unity. If the random vector is \(\mathbf{x} = (x_1, x_2, x_3) \), the probability distribution, is given by:

\[
f(x; m, k) = \frac{1}{4\pi d(k)} e^{\left\{ k_1(x_1m_1)^2 + k_2(x_2m_2)^2 + k_3(x_3m_3)^2 \right\}}
\]

where \(k = (k_1, k_2, k_3) \) is a matrix of constants, known as the concentrations; \(m_1, m_2 \) and \(m_3 \) are three orthogonal normalised vectors, the principal axes; \(m = (m_1, m_2, m_3) \); and \(d(k) \) is a constant which depends only on \(k_1, k_2 \) and \(k_3 \) and \(e \) is Euler’s number, the constant 2.71828... See Mardia (1972), Fisher et al. (1993), and Mardia and Jupp (2000) for further discussion. This distribution was popularised for use with paleomagnetic data by Onstott (1980). For other earth science applications, see: Kelker and Langenberg (1976) and Cheeney (1983). See also: e, spherical statistics, Fisher distribution, Kent distribution.

Binomial distribution, binomial model, binomial probability If \(p \) is the probability of an event occurring one way (e.g. a “success”) and \(q \) is the probability of it occurring in an alternative way (e.g. a “failure”) then \(p + q = 1 \), and \(p \) and \(q \) remain constant in \(n \) independent trials, then the probability distribution for \(x \) individuals occurring in a sampling unit is:

\[
P(x; n, p) = \binom{n}{x} p^x q^{n-x}
\]

where \(x \) is the number of individuals per sampling unit; and \(k! \) means \(k \) factorial. The arithmetic mean is \(kp \) and the standard deviation is \(\sqrt{kpq} \). Knowledge of this distribution goes back to the eighteenth Century, but the term binomial was introduced by the British statistician, George Udny Yule (1871–1951) (Yule 1911). For discussion in an earth science context, see: Miller and Kahn (1962), Koch and Link (1970–1971), Vistelius (1980, 1992), Agterberg (1984a) and Camina and Janacek (1984). See also trinomial distribution.

Biochronologic correlation A method of correlation between two or more spatial positions based on the dates of first and last appearances of taxa, reaching a particular evolutionary state, etc. For general reviews, see: Hay and Southam (1978) and Agterberg (1984c, 1990). See also: biostratigraphic zonation, correlation and scaling, ranking and scaling, unitary associations.

Biofacies map A map showing the areal distribution in the biological composition of a given stratigraphic unit based on quantitative measurements, expressed as percentages of the types of group present (e.g. brachiopods, pelecypods, corals, etc.). The American mathematical geologist, William Christian Krumbein (1902–1979) and Laurence
Louis Sloss (1913–1996) used isolines to portray the ratio of cephalopods/(gastropods + pelecypods) in the Mancos Shale of New Mexico (Krumbein and Sloss 1951). See also: lithofacies map.

Biometrical methods, biometrics Statistical and mathematical methods developed for application to problems in the biological sciences have long been applied to the solution of palaeontological problems. The term has been in use in the biological sciences since at least the 1920s, e.g. Hartzell (1924). The journal *Biometrics* began under the title *Biometrics Bulletin* in 1945 but changed to the shorter title in 1947 when the Biometrics Society became established in the USA under the Presidency of the English statistician, (Sir) Ronald Alymer Fisher (1890–1962), and a British “region” followed in 1948. Important early studies include those by the American palaeontologists, Benjamin H. Burma (1917–1982), followed by those of Robert Lee Miller (1920–1976) and Everett Claire Olsen (1910–1993) and by the English vertebrate palaeontologist, Kenneth A. Kermack (1919–2000) (Burma 1948, 1949, 1953; Miller 1949; Olsen and Miller 1951, 1958; Kermack 1954). The American geologist, John Imbrie (1925–) commented (Imbrie 1956) on the slowness with which palaeontologists were taking up such methods and he promoted the use of reduced major axis regression (Jones 1937), introduced into palaeontology by Kermack’s (1954) study, while regretting (in the pre-computer era) that practicalities limited such studies to the use of one- or two-dimensional methods. In later years, they embraced multivariate techniques such as principal components analysis, nonlinear mapping and correspondence analysis (Temple 1982, 1992). See also: Sepkoski (2012); biochronologic correlation.

Biostratigraphic zonation A biostratigraphic zone is a general term for any kind of biostratigraphic unit regardless of its thickness or geographic extent. Use of microfossils as an aid to stratigraphic zonation in the petroleum industry dates from about 1925, and graphical depiction of microfossil assemblage abundances as a function of stratigraphic unit position in a succession has been in use since at least the 1940s (Ten Dam 1947; LeRoy 1950a). Methods for achieving quantitative stratigraphic zonation are discussed in Hay and Southam (1978), Cubitt and Reyment (1982), Gradstein et al. (1985), Hattori (1985) and Agterberg (1984c, 1990).

Biplot, Gabriel biplot Graphical display of the rows and columns of a rectangular $n \times p$ data matrix X, where the rows generally correspond to the sample compositions, and the columns to the variables. In almost all applications, biplot analysis starts with performing
some **transformation** on X, depending on the nature of the data, to obtain a transformed matrix Z, which is the one that is actually displayed. The graphical representation is based on a **singular value decomposition** of matrix Z. There are essentially two different biplot representations: the **form biplot**, which favours the display of individuals (it does not represent the **covariance** of each variable, so as to better represent the natural form of the **data set**), and the **covariance biplot**, which favours the display of the variables (it preserves the covariance structure of the variables but represents the samples as a spherical cloud). Also known as the **Gabriel biplot**, named for the German-born statistician, Kuno Ruben Gabriel (1929–2003) who introduced the method (Gabriel 1971). See also: Greenacre and Underhill (1982), Aitchison and Greenacre (2002); and, in an earth science context, Buccianti et al. (2006).

Bispectral analysis, bispectrum The bispectrum, \(B(f_1, f_2) \) of a **time series** measures the statistical dependence between three **frequency bands** centred at \(f_1, f_2, \) and \(f_1 + f_2 \): \(B(f_1, f_2) = \mathbb{E}[P(f_1)P(f_2)P^*(f_1 + f_2)] \), where \(P(f) \) is the complex **Fourier transform** of the time series at frequency \(f \); \(\mathbb{E}(\cdot) \) is the **expectation operator**; and \(P^*(f) \) is the complex conjugate. Each band will be characterised by an **amplitude** and **phase**. If the sum or difference of the phases of these bands are statistically **independent**, then on taking the **average**, the bispectrum will tend to zero as a result of **random** phase mixing; but if the three frequency bands are related, the total **phase** will not be random (although the phase of each band may be randomly changing) and averaging will yield a peak at \(\{f_1, f_2\} \) on a **graph** of \(B(f_1, f_2) \) as a **function** of \(f_1 \) and \(f_2 \). The term was introduced by the American statistician, John Wilder Tukey (1915–2000) in an unpublished paper (Tukey 1953). See also: Tukey (1959b), Mendel (1991) and Nikias and Petropulu (1993); and, in an earth science context: Haubrich (1965), Hagelberg et al. (1991), Rial and Anaclerio (2000), Persson (2003) and Weedon (2003). See also: **bicoherence**.

bit An acronym for **binary** digit. Coined by the American statistician, John Wilder Tukey (1915–2000) about 1946, because the two states of an element in a **computer** core can represent one digit in the **binary** representation of a number. In the binary system, representation of **integer** numbers is in terms of powers of two, using only the digits 0 and 1. The position of the digits corresponds to the successive powers. e.g. in binary arithmetic \(0 + 0 = 0, 0 + 1 = 1, 1 + 0 = 1, 1 + 1 = 10 \); decimal \(2 = 0010 \), decimal \(3 = 0011 \), decimal \(4 = 0100 \), etc. and, e.g., decimal \(23 = 16 + 4 + 2 + 1 \), i.e. \(10000 + 00100 + 00010 + 00001 = 10111 \) in **binary notation**. It first appeared in print in an article by the American mathematician, Claude Elwood Shannon (1916–2001) (Shannon 1948). A **series** of 8 bits linked together are referred to as a **byte**. Mentioned in Davis and Sampson (1973).

Bit-map A **set** of **bits** that represent an image. Armstrong and Bennett (1990) describe a classifier for the detection of trends in hydrogeochemical **parameters** as a **function** of time, based on the conversion of concentration-time curves into bit-strings.
Bivariate, bivariate frequency distribution

1. The term *bivariate* is used in the context of the analysis of data in which each observation consists of values from two *variables*. It came into usage following its use by the British statistician, Karl Pearson (1857–1936) (Pearson 1920).

2. A *bivariate frequency distribution* is the *probability distribution* corresponding to the simultaneous occurrence of any pair of values from each of two variables (x and y). It shows not only the *univariate* frequency distributions for x and y, but also the way in which each value of y is distributed among the values of x and *vici-versa*. It is also known as a two-way or *joint* frequency distribution. The distribution of the “joint chance” involving two variables was discussed by the British mathematician, mathematical astronomer and geophysicist, (Sir) Harold Jeffreys (1891–1989) (Jeffreys 1939). However, bivariate frequency distributions were actually used earlier in geology, in an empirical fashion, by the French mathematician and cataloguer of earthquakes, Alexis Perrey (1807–1882) (Perrey 1847) and subsequently by Alkins (1920) and Schmid (1934); see also Miller and Kahn (1962), Smart (1979), Camina and Janacek (1984) and Swan and Sandilands (1995); *joint distribution*, *multivariate*.

Black box A conceptual model which has input variables, output variables and behavioural characteristics, but without specification of internal structure or mechanisms explicitly linking the input to output behaviours. The term is used to describe an element in a statistical model which contains features common to most techniques of statistical inference and in which only the input and output characteristics are of interest, without regard to its internal mechanism or structure. Although attributed to the Canadian statistician, Donald Alexander Stuart Fraser (1925–) (Fraser 1968), the term was previously used by the American statistician, John Wilder Tukey (1915–2000) in a geophysical context (Tukey 1959a). For discussion in geoscience applications see: Griffiths (1978a, 1978b), Kanasewich (1981), Tarantola (1984), Spero and Williams (1989), Gholipour et al. (2004), Jiracek et al. (2007) and Cabalar and Cevik (2009).

Black noise Coloured (American English sp. colored) noise can be obtained from white noise by passing the signal through a filter which introduces a degree of autocorrelation, e.g. \(x(t) = ax(t - 1) + kw(t) \) where \(w(t) \) is a white noise signal; \(a \) is a constant, \(0 < a < 1 \); \(k \) is the gain, and \(x(t) \) is the output signal at time \(t \). The power spectrum density for black noise is either characterised by predominantly zero power over most frequency ranges, with the exception of a few narrow spikes or bands; or increases linearly as \(f_p \), \(p > 2 \). The concept of white light as having a uniform power density over its spectrum was first discussed by the American mathematician, Norbert Wiener (1894–1964) (Wiener 1926), and taken up in digital signal processing by the American mathematician Richard Wesley Hamming (1915–1998) and statistician John Wilder Tukey (1915–2000) (Tukey and Hamming 1953).
Blackman-Harris window, Blackman-Harris taper Used in the operation of smoothing a periodogram with a lag window of weights applied to a discrete time waveform. N, the length of the window is typically even and an integer power of 2; for each point, $n = 0, \ldots, N$. The weight for a four-term window is given by

$$w(n) = 0.35875 - 0.48829 \cos \left(\frac{2\pi n}{N} \right) + 0.14128 \cos \left(\frac{4\pi n}{N} \right) - 0.01168 \cos \left(\frac{6\pi n}{N} \right);$$

where $n = 0, 1, 2, \ldots, (N - 1)$. Named for the American communications engineer, Ralph Beebe Blackman (1904–1990) (Blackman and Tukey 1958) and signal processing and communications specialist, Frederic J. Harris (1940–). Use of this window (Gubbins 2004) was introduced by Harris (1976) and subsequently became more widely known through industrial taught-courses (Harris 1977) and publication (Harris 1978; Rabiner et al. 1970). Window seems to be the preferred usage over taper (Google Research 2012). See also: Bartlett window, boxcar taper, cosine taper, Daniell window, data window, Gaussian taper, Hamming window, Hann window, multi-tapering method, optimal taper, Parzen window, Thomson tapering.

Blackman-Tukey method, Blackman-Tukey spectrum estimation Named for the American communications engineer, Ralph Beebe Blackman (1904–1990) and statistician, John Wilder Tukey (1915–2000) who introduced it (Blackman and Tukey 1958), this method of power spectral density analysis is based on the Fourier transform of the smoothed autocovariance function, which has been computed for lags up to a certain value (the truncation point), so as to eliminate the most noisy values (which are based on only a small number of data) prior to the Fourier transform. The results were shown in one study (Edmonds and Webb 1970) to be similar in practice to those obtained using the Fast Fourier transform (FFT) method, although the latter was found to be superior from the point of view of flexibility of use and computation time. For discussion in an earth science context, see Buttkus (1991, 2000) and Weedon (2003); see also: mean lagged product.

Blake’s method A method for determining the ellipticity (strain ratio) from measurements of the pressure-deformed spiral logarithmic growth curve in ammonites, goniatites and cephalopods. Named for the British geologist, John Frederick Blake (1839–1906) (Blake 1878). Mentioned in Ramsay and Huber (1983).
1. In analytical geochemistry, a dummy sample which has a chemical composition designed to contain a “zero” quantity of an analyte of interest. The term was in use in this sense in geochemistry by the early 1900s (Strutt 1908; Holmes 1911).

2. In geophysics, to replace a value by zero (Sheriff 1984).

Blind source separation, blind signal separation More usually known as Independent Component Analysis, this is a technique based on information theory, originally developed in the context of signal processing (Hérault and Ans 1984; Jutten and Hérault 1991; Comon 1994; Hyvärinen and Oja 2000; Hyvärinen et al. 2001; Comon and Jutten 2010) intended to separate independent sources in a multivariate time series which have been mixed in signals detected by several sensors. After whitening the data to ensure the different channels are uncorrelated, they are rotated so as to make the frequency distributions of the points projected onto each axis as near uniform as possible. The source signals are assumed to have non-Gaussian probability distribution functions and to be statistically independent of each other. Unlike principal components analysis (PCA), the axes do not have to be orthogonal, and linearity of the mixture model is not required. ICA extracts statistically independent components. Ciaramella et al. (2004) and van der Baan (2006) describe its successful application to seismic data. Blind source separation appears to be the most frequent usage (Google Research 2012).

Block averaging A technique for smoothing spatial distribution patterns in the presence of highly erratic background values, using the mean values of non-overlapping blocks of fixed size so as to enhance the presence of, for example, mineralized zones (Chork and Govett 1979).

Block diagram This is typically an oblique pseudo three-dimensional view of a gridded (contoured) surface with cross-sectional views of two of its sides. It has its origins in diagrams to illustrate geological structure. Early examples were produced as a by-product in computer mapping packages such as SURF (Van Horik and Goodchild 1975) and SURFACEII (Sampson 1975).

Block matrix This is a matrix which is subdivided into sections called blocks. Each block is separated from the others by imaginary horizontal and vertical lines, which cut the matrix completely in the given direction. Thus, the matrix is composed of a series of smaller matrices. A block Toeplitz matrix, in which each block is itself a Toeplitz matrix, is used in Davis (1987b). It is also known as a partitioned matrix, but the term block matrix has become the more widely used since the 1990s (Google Research 2012).

Block model A method of modelling, say, a mineral deposit, by its representation as a grid of three-dimensional blocks. One approach is to use equal sized (“fixed”) blocks.
Dunstan and Mill (1989) discuss the use of the octree encoding technique to enable blocks of different sizes to be used so as to better model the topography of the spatial boundary of the deposit by enabling the use of progressively finer resolution blocks as it is approached.

Blue noise Coloured [U.S. spelling, colored] noise can be obtained from white noise by passing the signal through a filter which introduces a degree of autocorrelation, e.g., \(x(t) = ax(t-1) + kw(t) \), where \(w(t) \) is a white noise signal; \(a \) is a constant, \(0 < a < 1 \); \(k \) is the gain, and \(x(t) \) is the output signal at time \(t \). The power spectrum density for blue (or azure) noise increases linearly as \(f \). The concept of white light as having a uniform power density over its spectrum was first discussed by the American mathematician, Norbert Wiener (1894–1964) (Wiener 1926), and taken up in digital signal processing by the American mathematician Richard Wesley Hamming (1915–1998) and statistician John Wilder Tukey (1915–2000) (Tukey and Hamming 1949); see also Blackman and Tukey (1958). For discussion in an earth science context, see Weedon (2003).

Bochner’s theorem This theorem, used in Armstrong and Diamond (1984), is named for the American mathematician of Austro-Hungarian origin, Salomon Bochner (1899–1982). It characterizes the Fourier transform of a positive finite Borel measure on the real line: every positive definite function \(Q \) is the Fourier transform of a positive finite Borel measure.

Bochner window This is another name for a window named after the Austro-Hungarian-American mathematician, Salomon Bochner (1899–1982) used in the operation of smoothing a periodogram with a lag window of weights applied to a discrete time signal (Parzen 1957, 1961). \(N \), the length of the window is typically even and an integer power of 2; for each point \(0 \leq n \leq N - 1 \), the weight is given by:

\[
w(n) = \begin{cases}
1 - 6\left(\frac{n-N/2}{N/2}\right)^2 + 6\left(\frac{|n-N/2|}{N/2}\right)^3; & 0 \leq \left| n - \frac{N}{2} \right| \leq \frac{N}{4} \\
2\left(1 - \frac{|n-N/2|}{N/2}\right)^3; & \frac{N}{4} < \left| n - \frac{N}{2} \right| \leq \frac{N}{2}
\end{cases}
\]

It is also named for the American statistician, Emanuel Parzen (1929–2016). Parzen (1962) applied a similar technique to estimation of a density trace. It is also known (Harris 1978) as the Riesz window. See also: Preston and Davis (1976), Buttkus (1991, 2000); spectral window.

Body rotation, body translation Body rotation: When a body moves as a rigid mass by rotation about some fixed point. Body translation: When a body moves without rotation or internal distortion. Both terms were used by Thomson and Tait (1878) and popularised in geology through the work of the English geologist, John Graham Ramsay (1931–) (1967, 1976). See also: Hobbs et al. (1976) and Ramsay and Huber (1983).
Boltzmann-Hopkinson theorem Convolution is the integral from \(i = 0 \) to \(t \) of the product of two functions, \(\int_0^t f_{1i} f_{2i} \, dx \). For two equal-interval discrete time series \(a = \{a_0, a_1, a_2, \ldots, a_n\} \) and \(b = \{b_0, b_1, b_2, \ldots, b_n\} \), the convolution, usually written as \(a \ast b \) or \(a \otimes b \), is \(c = \{c_0, c_1, c_2, \ldots, c_n\} \), where

\[
c_t = \sum_{i=0}^{t} a_i b_{t-i}.
\]

The operation can be imagined as sliding \(a \) past \(b \) one step at a time and multiplying and summing adjacent entries. This type of integral was originally used by the French mathematician, Pierre Simon, Marquis de Laplace (1749–1827), (Laplace 1781). The Hungarian-born American mathematician, Aurel Friedrich Wintner (1903–1958) may have been the first to use the English term convolution (Wintner 1934), although its German equivalent Faltung (folding, referring to the way in which the coefficients may be derived from cross-multiplication of the \(a \) and \(b \) terms and summation of their products along diagonals if they are written along the margins of a square table) appeared in Wiener (1933). The operation has also been referred to as the Boltzmann-Hopkinson theorem, Borel’s theorem, Duhamel’s theorem, Green’s theorem, Faltungsintegral, and the superposition theorem and a similar result may also be achieved in terms of z-transforms or Fourier transforms. It can also be applied in more than two dimensions (see: helix transform). See also: Tukey and Hamming (1949), Blackman and Tukey (1958), and in an earth science context: Robinson (1967b), Jones (1977), Vistelius (1980, 1992), Camina and Janacek (1984), Buttkus (1991, 2000) and Gubbins (2004); deconvolution.

Boolean algebra A version of standard algebra introduced by the British mathematician George Boole (1815–1864) (Boole 1854), based solely on use of the integer values zero (false) and unity (true). The usual algebraic operations of addition \((x + y)\), multiplication \((xy)\), and negation \((-x)\) are replaced by the operators: OR (disjunction, equivalent to the arithmetic result \(xy\)), AND (conjunction, equivalent to \(x + y - xy\)), and NOT (negation or compliment, equivalent to \(1 - x\)). Mentioned in an earth science context by Vistelius (1972).

Boolean similarity matrix This similarity criterion is named for the George Boole (1815–1864), a British mathematician who pioneered the use of binary logic in problem solving (Boole 1854). Each attribute (e.g. the occurrence of \(n \) indicator mineral species, at \(m \) mineralised districts to be compared), is coded as either zero for “absent” or unity for “present.” The resultant \(m \) (row) \(\times \) \(n \) (column) data matrix \((M) \) is multiplied by its \(n \times m \) transpose \((M^T)\) to form a product matrix \((P) \). The square roots of the sums of squares of the elements of the rows of \(P \) were called the mineral typicalities by the American geologist, Joseph Moses Botbol (1937–) (Botbol 1970). See also characteristic analysis.
Booton integral equation The American mathematician, Norbert Wiener (1894–1964) and Austrian-born American mathematician, Eberhard Frederich Ferdinand Hopf (1902–1983), who worked with Wiener at the Massachusetts Institute of Technology (1931–1936), devised a method for the solution of a class of integral equations of the form:

\[f(x) = \int_0^\infty k(x-y)f(y)dy, \]

where \(x \geq 0 \) (Wiener and Hopf 1931; Wiener 1949; Widom 1997). The solution for the non-stationary case was developed by American electrical engineer Richard Crittenden Booton Jr. (1926–2009) in the context of prediction of random signals and their separation from random noise (Booton 1952). The objective is to obtain the specification of a linear dynamical system (Wiener filter) which accomplishes the prediction, separation, or detection of a random signal. For discussion in a geophysical context, see Buttkus (1991, 2000).

Bootstrap A technique which involves computer-intensive resampling of a data set, in order to obtain nonparametric estimates of the standard error and confidence interval for medians, variances, percentiles, correlation and regression coefficients etc. It is based on repeatedly drawing at random, with replacement, a set of \(n \) samples from a pre-existing set of data values and determining the required statistics from a large number of trials. It was introduced by the American statistician, Bradley Efron (1938–) (Efron 1979; Efron and Tibshirani 1993). Examples of earth science applications include: Solow (1985), Campbell (1988), Constable and Tauxe (1990), Tauxe et al. (1991), Joy and Chatterjee (1998), Birks et al. (1990), Birks (1995) and Caers et al. (1999a,b); see also: cross-validation, jackknife.

Borehole log, well log A graphical or digital record of one or more physical measurements (or quantities derived from them) as a function of depth in a borehole; also known as a well log or wireline log, as they are often derived from measurements made by instruments contained in a sonde which is lowered down the borehole (Nettleton 1940; LeRoy 1950b). The first geophysical log (“electrical coring”) was made by Henri Doll (1902–1991), Roger Jost and Charles Scheibli over a 5 h period on September 5, 1927, in the Diefenbach Well 2905, in Pechelbronn, France, over an interval of 140 m, beginning at a depth of 279 m, using equipment designed by Doll following an idea for *Recherches Électriques dans les Sondages* [Electrical research in boreholes] outlined by Conrad Schlumberger (1878–1936) in a note dated April 28, 1927 (Allaud and Martin 1977, 103–108). The unhyphenated well log appears to be by far the most frequent usage (Google Research 2012).

Borel algebra, Borel measure The Borel algebra over any topological space is the sigma algebra generated by either the open sets or the closed sets. A measure is defined on the
sigma algebra of a topological space onto the set of real numbers (\(\mathbb{R}\)). If the mapping is onto the interval \([0, 1]\), it is a Borel measure. Both are named for the French mathematician, Félix Edouard Justin Émile Borel (1871–1956) and are mentioned in an earth science context by Vistelius (1980, 1992).

Borel’s theorem Convolution is the integral from \(i = 0\) to \(t\) of the product of two functions,

\[
\int_0^t f_1(t-i)f_2(t)\,dx.
\]

For two equal-interval discrete time series \(a = \{a_0, a_1, a_2, \ldots, a_n\}\) and \(b = \{b_0, b_1, b_2, \ldots, b_n\}\), the convolution, usually written as \(a*b\) or \(a \otimes b\), is \(c = \{c_0, c_1, c_2, \ldots, c_n\}\), where

\[
c_t = \sum_{i=0}^{t} a_i b_{t-i}.
\]

The operation can be imagined as sliding \(a\) past \(b\) one step at a time and multiplying and summing adjacent entries. This type of integral was originally used by the French mathematician, Pierre Simon, Marquis de Laplace (1749–1827), (Laplace 1781). The Hungarian-born American mathematician, Aurel Friedrich Wintner (1903–1958) may have been the first to use the English term convolution (Wintner 1934), although its German equivalent Faltung (folding, referring to the way in which the coefficients may be derived from cross-multiplication of the \(a\) and \(b\) terms and summation of their products along diagonals if they are written along the margins of a square table) appeared in Wiener (1933). The operation has also been referred to as the Boltzmann-Hopkinson theorem, Duhamel’s theorem, Green’s theorem, Faltungintegral, and the superposition theorem and a similar result may also be achieved in terms of \(z\)-transforms or Fourier transforms. It can also be applied in more than two dimensions (see: helix transform). See also: Tukey and Hamming (1949) and Blackman and Tukey (1958), and in an earth science context: Robinson (1967b), Jones (1977), Vistelius (1980, 1992), Camina and Janacek (1984), Buttkus (1991, 2000) and Gubbins (2004); deconvolution.

Boundary condition A constraint that a function must satisfy along a boundary. Knopoff (1956) and Cheng and Hodge (1976) are early examples of usage in geophysics and geology respectively.

Boundary value problem Solution of a differential equation with boundary conditions. The term was used in mathematics in Birkhoff (1908). Wuenschel (1960) and Cheng and Hodge (1976) are early examples of usage in geophysics and geology respectively.
Box-Cox transform A general method of transformation of a skewed (asymmetrical) frequency distribution into one which is more symmetrical, for the purposes of statistical analysis:

\[x^* = \begin{cases} \frac{x^{1-\lambda}}{\lambda}; & \lambda \neq 0 \\ \log_e(\lambda); & \lambda = 0 \end{cases} \]

where \(e \) is Euler’s number, the constant 2.71828... In practice, the value of \(\lambda \) is determined empirically so that it minimises one or more measures of the asymmetry of the distribution (e.g. skewness). Introduced by the British-born American chemist and mathematician, George Edward Pelham Box (1919–2013) and statistician, (Sir) David Roxbee Cox (1924–) (Box and Cox 1964); it is also known as the power transformation. Introduced into geochemical usage by Howarth and Earle (1979), its usage has been further developed by Joseph and Bhaumik (1997) and Stanley (2006a,b).

Box-count dimension This is a popular term for an estimator of fractal dimension \((D; > 0)\) for a two-dimensional spatial point pattern. The area occupied by the set of points is covered with a square mesh of cells, beginning with one of diameter \(d \), sufficient to cover the whole of the area occupied by the point set. The mesh size is then progressively decreased, and the number of occupied cells, \(N(d) \), at each size step is counted. Then, \(N(d) = cd^{-D} \), where \(c \) is a constant; a graph of \(\log(N(d)) \) (y-axis) as a function of \(\log(d) \) (x-axis) will be linear with a slope of \(-D\). This is more properly known as the Minkowski or Minkowski-Bouligand dimension, named after the Russian-born German mathematician, Hermann Minkowski (1864–1909) and the French mathematician, Georges Louis Bouligand (1889–1979). See: Minkowski (1901), Bouligand (1928, 1929), Mandelbrot (1975a, 1977, 1982), Turcotte (1997) and Kenkel (2013) for a cautionary note on sample-size requirements for such dimensionality estimation methods. Taud and Parrot (2005) discuss methods applied to topographic surfaces. See also Richardson plot.

Box-Jenkins process A stationary process in which the value of a time series at time \(t \) is correlated in some way with the value(s) in the previous time steps. An autoregressive moving average process, ARMA\((p, q)\) is:

\[
x_t - m = \phi_1(x_{t-1} - m) + \phi_2(x_{t-2} - m) + \ldots + \phi_p(x_{t-p} - m) + \varepsilon_t - \theta_1\varepsilon_{t-1} - \theta_2\varepsilon_{t-2} - \ldots - \theta_q\varepsilon_{t-q}
\]

where \(m \) is the mean level; \(\varepsilon \) is a white noise process with zero mean and a finite and constant variance; \(\phi_i, i = 1, p \) and \(\theta_j, j = 1, q \) are the parameters; and \(p, q \) are the orders. To obey the assumption of stationarity, the absolute values of \(\phi_1 \) and \(\theta_1 \) should be less than unity. The basic idea was introduced by the Swedish statistician, Herman Ole Andreas Wold (1908–1992) (Wold 1938), and later developed by the British-born

Boxcar distribution A probability density in which the probability of occurrence of the value of a variable $f(x)$ is the same for all values of x lying between x_{\min} and x_{\max} inclusive and zero outside that range (Vistelius 1980, 1992; Feagin 1981; Camina and Janacek 1984). The distribution is named after the shape of a “boxcar” railway freight waggon, a term which has been used in U.S. English since at least the 1890s. It is also known as the rectangular or uniform distribution.

Boxcar taper, boxcar weighting function, boxcar window The boxcar taper or window (Blackman and Tukey 1958; Alsop 1968), is named after the shape of a “boxcar” railway freight waggon, a term which has been used in American English since at least the 1890s, and is used in the operation of smoothing a periodogram with a lag window of weights applied to a discrete time waveform. N, the half-width of the window is typically even and an integer power of 2; for each point within $0 \leq n \leq N - 1$, the weight $w(n) = 1$, otherwise it is zero. Its shape contrasts with that of the smoothly changing weights in windows which are tapered. It is also known as a Daniell window (Blackman and Tukey 1958); rectangular window (Harris 1978); and Dirichlet window (Rice 1964; Harris 1978); see also: Camina and Janacek (1984) and Gubbins (2004).

Boxplot A graphical display, originally devised by the American statistician, John Wilder Tukey (1915–2000) (Tukey 1977; McGill et al. 1978), which is extremely useful for the simultaneous comparison of a number of frequency distributions (e.g. concentrations of a trace element in a number of different sampled rock types). For each set of data, the top and bottom of a central “box” are given by the first and third quartiles (Q_1, Q_3), so the rectangle formed by the box (which is conventionally drawn parallel to the vertical axis, corresponding to increasing magnitude of the variable studied) encloses the central 50% of the frequency distribution. The position of the second quartile (the median) is shown by a horizontal line dividing the box. In the most useful graph, so-called whiskers are drawn outwards from the top and bottom of the box to the smallest data value lying within Q_1 and $Q_1 - 1.5R$, where $R = Q_3 - Q_1$; or to the largest data value lying within Q_3 and $Q_3 + 1.5R$; and any “further out” data values are deemed to be outliers and are plotted individually. Less informative plots are produced by simply extending the whiskers out to the maximum and minimum of the data values. In a multi-group comparison, box-width can be made proportional to the sample size of each group. See Helsel (2005) for discussion of treatment of data containing nondetects. Although the spelling box-and-whisker-plot was originally used, the contractions boxplot or box plot now appear to be equally frequent (Google Research 2012). See also: notched boxplot and Chambers et al. (1983), Kurzl (1988), Frigge et al. (1989), Helsel and Hirsch (1992) and Reimann et al. (2008) for examples of usage.
Branching process A Markov process that models a population in which each individual in generation n produces some random number of offspring in generation $(n + 1)$, according to a fixed probability distribution which does not vary from individual to individual. The lines of descent “branching out” as new members are born. It has been applied to the study of the evolution of populations of individuals who reproduce independently. The mathematical problem was originally solved by the French statistician, Irénée-Jules Bienaymé (1796–1878), who published, without proof (Bienaymé 1845), the statement that eventual extinction of a family name would occur with a probability of one if, and only if, the mean number of male children is less than or equal to one (Heyde and Seneta 1977). The topic was revisited with the work of the English statistician, (Sir) Francis Galton (1822–1911) and mathematician, Rev. Henry William Watson (1827–1903) (Galton and Watson 1874; Watson and Galton 1875). Modern work began in the 1940s (Kolmogorov and Dmitriev 1947, 1992; Harris 1963; Jagers 1975). Discussed in the context of earthquake-induced crack-propagation in rocks by Vere-Jones (1976, 1977). See also Turcotte (1997).

Bray-Curtis coefficient A measure of the similarity of one sample to another in terms of their p-dimensional compositions. Given two samples j and k and percentages of the i-th variable (e.g. in ecological or paleoecological studies, species abundance) in each sample the Bray-Curtis metric, named for American botanists and ecologists, J. Roger Bray (1929–) and John T. Curtis (1913–1961), is:

$$d_{jk}^{BC} = \left\{ \frac{2 \sum_{i=1}^{p} \min(x_{ij}, x_{ik})}{\sum_{i=1}^{p} (x_{ij} + x_{ik})} \right\}$$

where min() implies the minimum of the two counts where a species is present in both samples (Bray and Curtis 1957). In their usage, the data were first normalized by dividing the percentages for each species by the maximum attained by that species over all samples. However, Bray and Curtis attribute this formulation to Motyka et al. (1950) and Osting (1956). Use of the minimum abundance alone was proposed as an “index of affinity” by Rogers (1976). An alternative measure:

$$d_{jk}^{S} = 100 \left\{ 1 - \frac{\sum_{i=1}^{p} |x_{ij} - x_{ik}|}{\sum_{i=1}^{p} (x_{ij} + x_{ik})} \right\},$$

where the difference without regard to sign (the absolute difference) replaces the minimum, has been used in Stephenson and Williams (1971) and later studies, but use of this measure has been criticised by Michie (1982). See also the comments by Somerfield (2008).
Breakage model, breakage process Theoretical statistical models for the size frequency distribution which results from progressive breakage of a single homogenous piece of material. First discussed by the Russian mathematician, Andrey Nikolaevich Kolmogorov (1903–1987), (Kolmogorov 1941a, 1992) the result of a breakage process (Halms 1944; Epstein 1947) yielded size distributions which followed the lognormal distribution, but it was subsequently found that this model may not always fit adequately. Applied to consideration of the comminution of rocks, minerals and coal, see Filippov (1961) and more recently discussed in connection with the formation of the lunar regolith (Marcus 1970; Martin and Mills 1977). See the discussion in the context of particle-size distribution by Dacey and Krumbein (1979); see also: Rosin’s law, Pareto distribution.

Breakpoint The point at which a statistically significant change in amplitude in the mean and/or variance of a time series occurs, indicating a change in the nature of the underlying process controlling the formation of the time series. Generally detected by means of a graph of the cumulative sum of mean and/or variance as a function of time (Montgomery 1991a) in which changepoints are indicated by a statistically significant change in slope, e.g. Green (1981, 1982) but see discussion in Clark and Royall (1996). See also: Leonte et al. (2003); segmentation.

Breddin curves In structural geology, a set of curves of angular shear strain (ψ; y-axis) as a function of orientation of the greatest principal extension direction (ϕ; x-axis) for differing values of the strain ratio, or ellipticity, (R). The strain ratio in a given case may be estimated by matching a curve of observed ψ versus ϕ as found from field measurements of deformed fossils with original bilateral symmetry. Introduced by the German geologist, Hans Breddin (1900–1973) (Breddin 1956); see Ramsay and Huber (1983).

Briggsian or common logarithm (log) An abbreviation for the common (i.e. base-10) logarithm. If $x = z^y$, then y is the logarithm to the base z of x, e.g. log$_{10}(100) = 2$ and log (xy) = log(x) + log(y); log(x/y) = log(x) − log(y), etc. The principle was originally developed by the Scottish landowner, mathematician, physicist and astronomer, John Napier, 8th Laird of Murchiston (1550–1617), who produced the first table of natural logarithms of sines, cosines and tangents, intended as an aid to astronomical, surveying and navigational calculations (Napier 1614; Napier and Briggs 1618; Napier and Macdonald 1889). “The same were transformed, and the foundation and use of them illustrated with his approbation” by the British mathematician, Henry Briggs (1561–1630), who following discussions with Napier whom he visited in 1615 and 1616, developed the idea of common logarithms (sometimes called Briggsian logarithms), defining log(1) = 0 and log(10) = 1, and obtaining the intermediate values by taking successive roots, e.g. $\sqrt{10}$ is 3.16227, so log(3.16227) = 0.50000, etc. His first publication (Briggs 1617) consisted of the first 1000 values computed, by hand, to 14 decimal places (they are almost entirely accurate to within $\pm 10^{-14}$; see Monta (2015) for an interesting
analysis). A full table was initially published in Latin (Briggs 1624). After Briggs death an
English edition was published “for the benefit of such as understand not the Latin tongue”
(Briggs 1631). Briggs logarithms were soon being applied in works on geophysics, e.g. by
the English mathematician, Henry Gellibrand (1597–1637) who was studying terrestrial
magnetism (Gellibrand 1635). The first extensive table of (Briggsian) anti-logarithms was
made by the British mathematician, James Dodson (?1705–1757) (Dodson 1742). All the
tables mentioned here were calculated by hand as mechanical calculations did not come
into use until the beginning of the twentieth Century. Although 10 is the common or
Briggsian base, others may be used, see: Napierian logarithm and phi scale.

Broken-line distribution This refers to the shape of the cumulative distribution of two
complimentarily truncated normal or lognormal distributions, which form two straight
lines which join at an angle at the truncation point. Parameter estimation uses a
numerical estimation of maximum likelihood. Applied by the British physicist, Cecil
Reginald Burch (1901–1983) to analysis of major and trace element geochemical
distributions (Burch and Murgatroyd 1971).

Brown noise Coloured (colored, American English sp.) noise can be obtained from white
noise by passing the signal through a filter which introduces a degree of autocorrelation,
e.g. \(x(t) = ax(t - 1) + kw(t) \) where \(w(t) \) is a white noise signal; \(a \) is a constant, \(0 < a < 1 \); \(k \) is
the gain, and \(x(t) \) is the output signal at time \(t \). The power spectrum density for brown
noise decreases linearly as \(1/f^2 \). The concept of white light as having a uniform power
density over its spectrum was first discussed by the American mathematician, Norbert
Wiener (1894–1964) (Wiener 1926), and taken up in digital signal processing by the
American mathematician Richard Wesley Hamming (1915–1998) and statistician John
Wilder Tukey (1915–2000) (Tukey and Hamming 1949); see also Blackman and Tukey

Brownian motion, Brownian walk Now generally considered in the context of a
one-dimensional time series in which over a fixed interval \((T) \) the variance is proportional
to \(T \) and the standard deviation is proportional to \(\sqrt{T} \). In fractional Brownian motion
(fractal), the variance is proportional to \(2H \) and standard deviation to \(H \), where \(H \) is the
Hurst exponent. It is named for the British botanist, Robert Brown (1773–1858), who first
described the phenomenon (Brown 1828), which he observed in 1827 in microscopic
examination of the random movement of pollen grains suspended in water. In 1905, the
German-American physicist, Albert Einstein (1879–1955), unaware of Brown's
observations, showed theoretically (Einstein 1905, 1926) that the random difference
between the pressure of molecules bombarding a microscopic particle from different
sides would cause such movement, and that the probability distribution of a particle
moving a distance \(d \) in a given time period in a given direction would be governed by the
normal distribution. His theory of Brownian motion was verified in emulsions by the
French physicist, Jean-Baptiste Perrin (1870–1942), following invention of the ultramicroscope (Perrin 1908; Newburgh et al. 2006). See also: Wiener (1923, 1949) and Weedon (2003); random walk.

Buffon’s needle problem This was first posed in an editorial comment by the French natural historian and mathematician, Georges-Louis Leclerc, Comte de Buffon (1707–1788) in 1733. It seeks the probability $P(x)$ with which a needle of given length l, dropped at random onto a floor composed of parallel strips of wood of constant width d, will lie across the boundary between two of the strips. He showed (Buffon 1777, 46–123) that if $d \geq 1$ then

$$P(x) = \frac{2l}{\pi d},$$

and if $d < l$, then

$$P(x) = \frac{2l}{\pi d} \left(1 - \cos \theta\right) + \frac{\pi - 2\theta}{\pi},$$

where $\theta = \arcsin(d/l)$. In modern times, it has been used as a model for an airborne survey seeking a linear target and flying along parallel, equi-spaced, flight lines (Agos 1955; McCammon 1977). Chung (1981) solved the problem for the case of search using unequally-spaced parallel strips and a needle with a preferred orientation.

Bug An error in a computer program, or hardware (International Business Machines [undated]) which causes it to produce erroneous, or unexpected, results. Although use of the term in this context was popularised following work in engineering, radar and early computers in the late 1940s (Shapiro 1987), its origins go back to nineteenth Century telegraphy and its use by Thomas Edison to indicate the occurrence of some kind of problem in electrical circuits (Edison 1878; Mangoun and Israel 2013).

Burnaby’s similarity coefficient This is a weighted similarity coefficient. The English palaeontologist, Thomas Patrick Burnaby (1924–1968) discussed the use of character weighting in the computation of a similarity coefficient in a paper, originally drafted in
1965, which was only published posthumously (Burnaby 1970). See Gower (1970) for a critique of Burnaby’s approach.

Burr distribution Named for the American statistician, Irving Wingate Burr (1908–1989), this right-skew distribution was introduced by Burr (1942), is

\[f(x) = ck \left(\frac{x(c - 1)}{(1 + cx)(k + 1)} \right) \]

and the cumulative distribution

\[F(x) = 1 - \frac{1}{(1 + cx)^k}, \]

where \(x \geq 0 \) and with shape parameters \(c \geq 1 \) and \(k \geq 1 \). The **Weibull**, **exponential** and **log-logistic distributions** can be regarded as are special cases of the *Burr distribution*. It has been widely applied in reliability studies and failure-time modelling. Discussed in an earth science context by Caers et al. (1999a,b).

Butterfly effect The property of sensitivity of a dynamical system to initial conditions. The idea was first popularised by the French mathematical physicist and mathematician, Jules Henri Poincaré (1854–1912) (Poincaré 1908), but the term itself apparently arose from the title of a talk given by the American meteorologist, Edward Norton Lorenz (1917–2008) to the American Association for the Advancement of Science in 1972: “Predictability: Does the flap of a butterfly’s wings in Brazil set off a tornado in Texas?” See: **Lorenz attractor**.

Butterworth filter An electronic filter designed to have as flat as possible a frequency response (i.e. free of ripples) in the passband; the gain drops off in a linear fashion towards negative infinity away from the edges of the passband. Introduced by the British physicist, Steven Butterworth (1885–1958) (Butterworth 1930). Mentioned in an earth science context by Buttkus (1991, 2000) and Gubbins (2004).
Byte A sequence of eight bits. The term was introduced by the German-American computer scientist, Werner Buchholz (1922–2003) in 1956, when he was working on the design of the International Business Machines (IBM) 7030 “Stretch” computer, their first transistorized supercomputer, to describe the number of bits used to encode a single character of text in a computer (Buchholz 1962, 1981). Mentioned in Davis and Sampson (1973).
Dictionary of Mathematical Geosciences
With Historical Notes
Howarth, R.
2017, XVI, 893 p., Hardcover
ISBN: 978-3-319-57314-4