Contents

Part I The Big Bang and the Observable Universe

1 A Historical Overview 3
 1.1 The Big Cosmic Questions 3
 1.2 Origins of Scientific Cosmology 4
 1.3 Cosmology Today 7

2 Newton’s Universe 13
 2.1 Newton’s Laws of Motion 13
 2.2 Newtonian Gravity 16
 2.3 Acceleration of Free Fall 19
 2.4 Circular Motion and Planetary Orbits 20
 2.5 Energy Conservation and Escape Velocity 22
 2.6 Newtonian Cosmology 26
 2.7 Olbers’ Paradox 27

3 Special Relativity 31
 3.1 The Principle of Relativity 31
 3.2 The Speed of Light and Electromagnetism 35
 3.3 Einstein’s Postulates 39
 3.4 Simultaneity 41
 3.5 Time Dilation 42
 3.6 Length Contraction 44
 3.6.1 Speeding Muons 45
 3.7 $E = mc^2$ 46
 3.8 From Space and Time to Spacetime 47
 3.9 Causality in Spacetime 51
4 The Fabric of Space and Time
 4.1 The Astonishing Hypothesis
 4.2 The Geometry of Space
 4.2.1 Euclidean Geometry
 4.2.2 Non-Euclidean Geometry
 4.3 Curved Space
 4.3.1 The Curvature of Surfaces
 4.3.2 The Curvature of Three-Dimensional Space
 4.4 The General Theory of Relativity
 4.5 Predictions and Tests of General Relativity
 4.5.1 Light Deflection and Gravitational Lensing
 4.5.2 Gravitational Time Dilation
 4.5.3 Black Holes
 4.5.4 Gravitational Waves

5 An Expanding Universe
 5.1 Einstein’s Static Universe
 5.2 Problems with a Static Universe
 5.3 Friedmann’s Expanding Universe

6 Observational Cosmology
 6.1 Fingerprints of the Elements
 6.2 Measuring Velocities
 6.3 Measuring Distances
 6.4 The Birth of Extragalactic Astronomy

7 Hubble’s Law and the Expanding Universe
 7.1 An Expanding Universe
 7.2 A Beginning of the Universe?
 7.3 The Steady State Theory
 7.4 The Scale Factor
 7.5 Cosmological Redshift
 7.6 The Age of the Universe
 7.7 The Hubble Distance and the Cosmic Horizon
 7.8 Not Everything is Expanding

8 The Fate of the Universe
 8.1 The Critical Density
 8.2 The Density Parameter
9 Dark Matter and Dark Energy 131
 9.1 The Average Mass Density of the Universe and Dark Matter 131
 9.2 Dark Energy 136
 9.3 The Fate of the Universe—Again 140

10 The Quantum World 143
 10.1 Quantum Discreteness 143
 10.2 Quantum Indeterminism 145
 10.3 The Wave Function 148
 10.4 Many Worlds Interpretation 151

11 The Hot Big Bang 155
 11.1 Following the Expansion Backwards in Time 155
 11.2 Thermal Radiation 158
 11.3 The Hot Big Bang Model 161
 11.4 Discovering the Primeval Fireball 162
 11.5 Images of the Baby Universe 165
 11.6 CMB Today and at Earlier Epochs 168
 11.7 The Three Cosmic Eras 170

12 Structure Formation 175
 12.1 Cosmic Structure 175
 12.2 Assembling Structure 179
 12.3 Watching Cosmic Structures Evolve 180
 12.4 Primordial Density Fluctuations 182
 12.5 Supermassive Black Holes and Active Galaxies 183

13 Element Abundances 187
 13.1 Why Alchemists Did Not Succeed 187
 13.2 Big Bang Nucleosynthesis 189
 13.3 Stellar Nucleosynthesis 193
 13.4 Planetary System Formation 194
 13.5 Life in the Universe 196

14 The Very Early Universe 201
 14.1 Particle Physics and the Big Bang 201
 14.2 The Standard Model of Particle Physics 205
 14.2.1 The Particles 206
 14.2.2 The Forces 206
 14.3 Symmetry Breaking 208
 14.4 The Early Universe Timeline 211
14.5 Physics Beyond the Standard Model
 14.5.1 Unifying the Fundamental Forces
14.6 Vacuum Defects
 14.6.1 Domain Walls
 14.6.2 Cosmic Strings
 14.6.3 Magnetic Monopoles
14.7 Baryogenesis

Part II Beyond the Big Bang

15 Problems with the Big Bang
 15.1 The Flatness Problem: Why is the Geometry of the Universe Flat?
 15.2 The Horizon Problem: Why is the Universe so Homogeneous?
 15.3 The Structure Problem: What is the Origin of Small Density Fluctuations?
 15.4 The Monopole Problem: Where Are They?

16 The Theory of Cosmic Inflation
 16.1 Solving the Flatness and Horizon Problems
 16.2 Cosmic Inflation
 16.2.1 The False Vacuum
 16.2.2 Exponential Expansion
 16.3 Solving the Problems of the Big Bang
 16.3.1 The Flatness Problem
 16.3.2 The Horizon Problem
 16.3.3 The Structure Formation Problem
 16.3.4 The Monopole Problem
 16.3.5 The Expansion and High Temperature of the Universe
 16.4 Vacuum Decay
 16.4.1 Boiling of the Vacuum
 16.4.2 Graceful Exit Problem
 16.4.3 Slow Roll Inflation
 16.5 Origin of Small Density Fluctuations
 16.6 More About Inflation
 16.6.1 Communication in the Inflating Universe
 16.6.2 Energy Conservation
17 Testing Inflation: Predictions and Observations 255
 17.1 Flatness 255
 17.2 Density Fluctuations 256
 17.3 Gravitational Waves 260
 17.4 Open Questions 264

18 Eternal Inflation 269
 18.1 Volume Growth and Decay 269
 18.2 Random Walk of the Inflaton Field 271
 18.3 Eternal Inflation via Bubble Nucleation 274
 18.4 Bubble Spacetimes 275
 18.5 Cosmic Clones 279
 18.6 The Multiverse 281
 18.7 Testing the Multiverse 284
 18.7.1 Bubble Collisions 284
 18.7.2 Black Holes from the Multiverse 285

19 String Theory and the Multiverse 291
 19.1 What Is String Theory? 292
 19.2 Extra Dimensions 294
 19.3 The Energy Landscape 295
 19.4 String Theory Multiverse 296
 19.5 The Fate of Our Universe Revisited 297

20 Anthropic Selection 301
 20.1 The Fine Tuning of the Constants of Nature 302
 20.1.1 Neutron Mass 302
 20.1.2 Strength of the Weak Interaction 303
 20.1.3 Strength of Gravity 303
 20.1.4 The Magnitude of Density Perturbations 303
 20.2 The Cosmological Constant Problem 304
 20.2.1 The Dynamic Quantum Vacuum 304
 20.2.2 Fine-Tuned for Life? 305
 20.3 The Anthropic Principle 307
 20.4 Pros and Cons of Anthropic Explanations 309

21 The Principle of Mediocrity 313
 21.1 The Bell Curve 313
 21.2 The Principle of Mediocrity 314
 21.3 Obtaining the Distribution by Counting Observers 315
Contents

21.4 Predicting the Cosmological Constant \hspace{2em} 316
 21.4.1 Rough Estimate \hspace{2em} 317
 21.4.2 The Distribution \hspace{2em} 317
21.5 The Measure Problem \hspace{2em} 319
21.6 The Doomsday Argument and the Future of Our Civilization \hspace{2em} 321
 21.6.1 Large and Small Civilizations \hspace{2em} 322
 21.6.2 Beating the Odds \hspace{2em} 323

22 Did the Universe Have a Beginning? \hspace{2em} 327
 22.1 A Universe that Always Existed? \hspace{2em} 327
 22.2 The BGV Theorem
 22.2.1 Where Does This Leave Us? \hspace{2em} 330
 22.2.2 A Proof of God? \hspace{2em} 331

23 Creation of Universes from Nothing \hspace{2em} 333
 23.1 The Universe as a Quantum Fluctuation \hspace{2em} 333
 23.2 Quantum Tunneling from “Nothing” \hspace{2em} 336
 23.2.1 Euclidean Time \hspace{2em} 337
 23.3 The Multiverse of Quantum Cosmology \hspace{2em} 338
 23.4 The Meaning of “Nothing” \hspace{2em} 339

24 The Big Picture \hspace{2em} 343
 24.1 The Observable Universe
 24.1.1 What Do We Know? \hspace{2em} 343
 24.1.2 Cosmic Inflation \hspace{2em} 344
 24.2 The Multiverse
 24.2.1 Bubble Universes \hspace{2em} 345
 24.2.2 Other Disconnected Spacetimes \hspace{2em} 346
 24.2.3 Levels of the Multiverse \hspace{2em} 346
 24.2.4 The Mathematical Multiverse and Ockham’s Razor \hspace{2em} 347
 24.3 Answers to the “Big Questions” \hspace{2em} 350
 24.4 Our Place in the Universe \hspace{2em} 351

Appendix A \hspace{2em} 353

Further Reading \hspace{2em} 361

Index \hspace{2em} 365
Cosmology for the Curious
Perlov, D.; Vilenkin, A.
2017, XIV, 372 p. 202 illus., 63 illus. in color., Hardcover
ISBN: 978-3-319-57038-9