1 Representation and Knowledge: The Semiotic Revolution 1
 1.1 The Fundamental Epistemological Distinction and the First Knowledge Analysis Scheme ... 2
 1.1.1 The Cognitive Issue of Access to the Objects Themselves and Role of Representations .. 4
 1.1.2 Sign and Representation: The Cognitive Divide 5
 1.2 The Semiotic Revolution: Towards a New Knowledge Analysis Scheme .. 8
 1.3 The Three Models of Sign Analysis That Have Founded Semiotics: Contributions and Limits ... 11
 1.3.1 Saussure: Structural Analysis of Semiotic Systems 12
 1.3.2 Peirce: The Classification of Kinds of Representations 14
 1.3.3 Frege: Semiotic Substitution and Production of New Knowledge in Mathematics .. 15
 1.4 Conclusion: The Semiotic Representations 17
Annex ... 19

2 Mathematical Activity and the Transformations of Semiotic Representations ... 21
 2.1 Two Epistemological Situations, One Irreducible to the Other, in the Access to Objects of Knowledge ... 23
 2.1.1 The Juxtaposition Test with a Material Object: The Photo Montage of Kosuth ... 23
 2.1.2 The Juxtaposition Test with the Natural Numbers 25
 2.1.3 How to Recognize the Same Object in Different Representations? ... 27
 2.1.4 A Fundamental Cognitive Operation in Mathematics: One-to-One Mapping ... 29
 2.2 The Transformation of Semiotic Representations at the Heart of the Mathematical Way of Working .. 31
2.2.1 Description of an Elementary Mathematical Activity:
The Development of Polygonal Unit Marks
Configuration ... 32

2.2.2 Representational Transformations Specific to each Kind
of Semiotic Representation: The Case of Representation
of Numbers.. 36

2.3 Conclusion: The Cognitive Analysis of the Mathematical Activity
and the Functioning of the Mathematical Thinking................. 41

3 Registers of Semiotic Representations and Analysis of the Cognitive
Functioning of Mathematical Thinking ... 45
3.1 Semiotic Registers and Cognitive Functioning of Thought.......... 47
 3.1.1 Two Heterogeneous Kinds of Semiotic Systems:
The Codes and Registers... 47
 3.1.2 The Three Types of Discursive Operations
and the Cognitive Functions of Natural Languages................. 51
 3.1.3 The Relationship Between Thought and Language:
Discursive Operations and Linguistic Expression 54
 3.1.4 Conclusion: What Characterizes a Register of Semiotic
Representation.. 56

3.2 Do the Various Forms of Representation Used in Mathematics
Depend on Registers? ... 57
 3.2.1 How do We see a Figure?... 58
 3.2.2 The Two Types of Figural Operations Proper
to the Geometrical Figures.. 61
 3.2.3 Concealment of the Register of Figures in the Teaching
of Geometry and Didactic Analyses 63
 3.2.4 Geometric Visualization and Problems from Reality: Direct
Passage or Need for Intermediary Representations?.............. 65

3.3 Conclusions.. 67

4 The Registers: Method of Analysis and Identification
of Cognitive Variables... 73
4.1 How to Isolate and Recognize the Meaning Units Mathematically
Relevant in the Content of a Representation? 75
 4.1.1 Production of Graphs and Their Equivocal
Obviousness .. 76
 4.1.2 Methodology to Isolate the Mathematically Relevant
Meaning Units in Any Representation Content 77
 4.1.3 What Kind of Task for Developing the Recognition
of Mathematically Relevant Meaning Units? 81

4.2 The Analysis of Mathematical Activity Based on the Couples
of Mobilized Registers.. 83
 4.2.1 Congruence and Non-Congruence Phenomena
in the Conversion of the Representations................................ 86
4.2.2 The Particular Role of Natural Language in the Cognitive Functioning Subjacent to the Mathematical Reasoning ... 90
4.2.3 The Understanding of the Problem Statements and the Need for Transitional Auxiliary Representations 91
4.2.4 The Problem of Cognitive Connection Between the Natural Language and Other Registers 95

4.3 Functional Variations of Phenomenological Production Methods and Semiotic Representation Registers 96
4.3.1 The Misleading Confusion Between Functional and Structural Variations in Production of Representations ... 97
4.3.2 The Computer Monitors: Another Phenomenological Mode of Production of Representations 99

4.4 Method of Analysis of the Activities in Class and Student Productions: The Problem of Didactically Relevant Variables 102
4.4.1 The Organization of Sequences of Activities Always Has Two Sides ... 102
4.4.2 The Field of Work Cognitively Required for a Teaching Sequence of Geometrical Activities at Primary School 104
4.4.3 Observation of the Students and Analysis of Their Productions and Reactions ... 105
4.4.4 Interactions and Cognitive Impact of Three Kinds of Verbalization on Understanding ... 107

4.5 Conclusions .. 108

Annex ... 113
Analysis of an Example of Introduction of the Linear Function Concept in a Textbook for Students Aged 13–14 Years Old 113

Index ... 115