Preface

The concept of wireless information and power transfer provides researchers with a unique set of challenges which is quite distinct from their traditional fixed power supply. New approaches in, wireless power transmission (or transfer) (WPT) is paramount as it helps us to overcome the scarcity of electric power when electric power is supplied wirelessly.

The necessities of communication systems are a burgeoning issue that is already straining operating budgets and attracting the attention of policymakers around the globe. Communication technologies continue to be a central element of the transition to smart, energy-efficient and sustainable lifestyles. Radio frequency (RF) energy transfer and harvesting techniques have recently become alternative methods to power next-generation wireless networks. This book features the latest research findings in the area of wireless energy harvesting through RF wireless power transfer and simultaneous information and power transfer in light of the emerging area of the Internet of Things.

All living and machine entities rely on both information and power for their existence. Although these two entities are work harmoniously, in traditional engineering design; information and power are handled by separate systems with limited interaction. Indeed, wireless energy harvesting (WEH) through radio waves has already found various applications (such as the radiofrequency identification (RFID) technology, healthcare monitoring, etc.), but radio wave-based communication and power transfer have largely been designed separately. The contributions in this book aim at achieving a breakthrough in the design of WPT networks whilst delivering simultaneously high quality to this rapidly evolving area. This book brings together the latest findings in wireless information and power transfer in order to disseminate state-of-the-art results and inspire future research in this field. This introduces a new paradigm of green communications.

The editors would like to express their gratitude to all the contributors for their full cooperation during the entire authoring and production process and their patience through the reviewing rounds and specifically to Himal A. Suraweera, Salman Durrani, Nalin D. K. Jayakody, Shree Krishna Sharma, Symeon...

Furthermore, a special thanks goes out to the reviewing team for providing constructive feedback and improving the quality of the content: Himal Suraweera, Pan Cao, Nalin D. K. Jayakody, Cristian Rusu, Mohammad Ali Mohammadi, Bin Chen, Batu Chalise, Sumit Gautam, Dang Khoa Nguyen, Christos Masouros, Yunfei Chen and Muhammad Ismail.

The writing of this book would not have been possible without the support of many friends and colleagues. This work was funded, in part, by the Ministry of Education and Science of the Russian Federation Grant No. 02.G25.31.0190 dated 27.04.2016 and performed in accordance with Russian Government Resolutions No. 218 of 09.04.2010; by various funding schemes of the Ministry of Education and Science, Russia; by the FNR-FNRS bilateral project “InWIP-NETs: Integrated Wireless Information and Power Networks”; by the Australian Research Council’s Discovery Project funding scheme (project number DP140101133); by the Norwegian-Estonian Research Cooperation Programme through grant EMP133; and by the Estonian Research Council through research grant PUT405. Authors also acknowledged the contribution of the COST Action on Inclusion Radio Communications (IRACON) CA15104.

Finally, the editors would like to thank Mary E. James and Brinda Megasyamalan from Springer for their support in bringing this book to completion.

Tomsk, Russia
Dushantha Nalin K. Jayakody
Edinburgh, UK
John Thompson
Esch-sur-Alzette, Luxembourg
Symeon Chatzinotas
Canberra, ACT, Australia
Salman Durrani
Wireless Information and Power Transfer: A New Paradigm for Green Communications
Jayakody, D.N.K.; Thompson, J.; Chatzinotas, S.; Durrani, S. (Eds.)
2018, XXXI, 361 p. 143 illus., 111 illus. in color., Hardcover
ISBN: 978-3-319-56668-9