Contents

1 **Introduction** ... 1
 References. ... 16

2 **The Theory of a Local Ignition** .. 19
 1 On the Theory of a Local Thermal Explosion 19
 2 Nonstationary Ignition of a Hot Spot 25
 3 Initiation of a Hydrogen–Air Flame with a Hot Spot. Verification of the Theory .. 30
 4 Conclusions ... 41
 Appendix ... 41
 References. ... 43

3 **The Wave Theory of Ignition** .. 45
 1 Ignition of the Condensed Substances with Heat Losses from the Side Surface ... 46
 2 Ignition of a Condensed Substance with a Constant Heat Flux Released in Two Competing Exothermic Reactions 54
 3 The Features of Ignition of the Condensed Systems Interacting Through a Layer of a Refractory Product with an Energy Flux 64
 4 Regularities of Ignition of the Condensed Systems with a Heated Surface Under Parabolic Law of Chemical Interaction 72
 5 Regularities of Ignition of Porous Bodies Under Conditions of a Counter Nonstationary Filtration of Gas 81
 6 Ignition of Porous Substances with the Filterable Gas. Cocurrent Nonstationary Filtration ... 97
 7 Conclusion ... 112
 References. ... 114

xiii
4 The Convective–Conductive Theory of Combustion of Condensed Substances .. 117
 1 Convective Combustion of “Gasless” Systems 118
 2 Convective Heat and Mass Transfer in the Processes of “Gasless” Combustion ... 132
 3 The Features of Combustion of the Mixes Ti + 0.5C and Ti + C of Bulk Density in a Cocurrent Flow of Inert Gas 142
 4 Influence of Humidity on the Features of Combustion of Powder and Granulated Ti + 0.5C Mixes 151
 5 Dependence of Combustion Velocity on the Sample Size in Nonactivated and Mechanically Activated Ni + Al Systems 157
 6 Combustion of Cylindrical Ti + 0.5C Compacts: Influence of Mechanical Activation, Thermovacuum Processing, and Ambient Pressure ... 163
 7 Conclusion .. 166
References ... 167

5 Theory of Ignition of Gas Suspensions 171
 1 Analytical Method of Calculation of Critical Conditions of a Local Ignition of Gas Suspensions of Solid Particles 172
 2 Analysis of Critical Conditions of Ignition of Gas Suspension with a Heated Body at Pulse Energy Supply 180
 3 Mathematical Modeling of the Process of Ignition of Gas Suspension of Solid Particles in a Mix Oxidizer—Combustible Gas (a Local Ignition) ... 194
 4 Thermal Ignition of Hybrid Gas Suspensions in the Presence of Natural Gas and Chemically Active Additives 205
 5 Conclusions .. 210
References ... 212

6 Ignition, Combustion, and Passivation of Nanopowders 215
 1 Ignition of Pyrophoric Powders: An Entry-Level Model 218
 2 Temporal Characteristics of Ignition and Combustion of Iron Nanoparticles in the Air ... 226
 3 Synthesis and Characterization of Passivated Iron Nanoparticles .. 233
 4 Passivation of Iron Nanoparticles at Subzero Temperatures 238
 5 Conclusions .. 244
References ... 245

7 Conclusions ... 249
Ignition and Wave Processes in Combustion of Solids
Rubtsov, N.M.; Seplyarskii, B.S.; Alymov, M.I.
2017, XIV, 253 p. 102 illus., 15 illus. in color., Hardcover
ISBN: 978-3-319-56507-1