Contents

1 Introduction to Computational Meso-Bio-Nano (MBN) Science and MBN EXPLORER .. 1
 1.1 Meso-Bio-Nano Science: A Novel Field of Interdisciplinary Research ... 1
 1.1.1 Structure and Dynamics of MBN Systems 2
 1.1.2 Clustering, Self-organisation and Structure Formation in MBN Systems 7
 1.1.3 Novel Materials .. 10
 1.1.4 Novel Technologies 12
 1.1.5 Multiscale Nature of MBN Systems 14
 1.2 Computational Approaches in MBN Science 16
 1.2.1 Quantum Atomic and Nanoscales 16
 1.2.2 Classical Nano- and Mesoscales 17
 1.2.3 Monte Carlo Approach and Finite Element Method ... 21
 1.2.4 MBN EXPLORER—a Universal Multiscale Approach 24
 1.3 Basics of MBN EXPLORER and MBN STUDIO 25
 1.3.1 MBN EXPLORER Main Features 29
 1.3.2 Areas of Application of MBN EXPLORER 30
 1.3.3 MBN STUDIO Main Features 36

2 Theoretical Approaches for Multiscale Computer Simulations .. 43
 2.1 Hierarchy of Theoretical Methods and Their Limitations: ab initio Methods and Model Approaches 43
 2.2 Methods for Studying Dynamical Molecular Processes and Related Phenomena 46
 2.2.1 Newtonian Dynamics 47
 2.2.2 Relativistic Dynamics 47
 2.2.3 Rigid Body Dynamics 48
 2.2.4 Temperature Control 49
2.3 Modeling Interatomic Interactions .. 53
 2.3.1 Pairwise Potentials .. 53
 2.3.2 Many-Body Potentials ... 59
2.4 Studying Biomolecules: The Force Field Concept
 and Beyond .. 64
 2.4.1 Molecular Mechanics Force Field 64
 2.4.2 Rupture of Covalent Bonds 67
 2.4.3 Rupture of Valence Angles 69
 2.4.4 Rupture of Dihedral Interactions 70
 2.4.5 Formation of New Bonds 71
 2.4.6 Partial Charges Redistribution 72
2.5 Multiscale Methods .. 72
 2.5.1 Kinetic Monte Carlo Method 73
 2.5.2 Simplifications of the KMC Method 75
 2.5.3 Particle Dynamics Model 76
 2.5.4 Irradiation Driven Molecular Dynamics 78
2.6 Computational Aspects of Multi-particle Simulations 80
 2.6.1 Basic Interaction Approach 80
 2.6.2 Linked Cell Interaction Approach 81
 2.6.3 Boundary Conditions .. 84
 2.6.4 Calculation of Coulomb Interactions 88

3 Computational Modelling of MBN Systems 97
 3.1 Introduction .. 97
 3.2 MBN STUDIO Toolkit ... 101
 3.2.1 Basic Structure of MBN STUDIO 101
 3.2.2 Visualisation of the Results 105
 3.2.3 Modeling MBN Systems 106
 3.3 Modeling of Crystalline Structures 108
 3.3.1 Specific Features of Crystalline Structures 108
 3.3.2 Simulation of Crystalline Structures
 with MBN STUDIO .. 111
 3.4 Modelling of Liquids ... 113
 3.4.1 Liquids in MBN STUDIO 113
 3.4.2 Analysing Simulations with MBN STUDIO 115
 3.5 Modelling of Gases .. 116
 3.6 Modelling of Material Interphases 119

4 Atomic Clusters and Nanoparticles ... 121
 4.1 Introduction .. 121
 4.2 The Problem of Global Minimum 124
 4.2.1 Cluster Fusion Process 125
 4.2.2 Scenarios for Cluster Fusion Process 126
 4.2.3 Selection Criteria for Cluster Fusion Process 127
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3</td>
<td>Noble Gas Clusters</td>
<td>127</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Mass Spectra and Sequence of Magic Numbers</td>
<td>128</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Fusion of Global Energy Minimum Clusters</td>
<td>129</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Cluster Binding Energies</td>
<td>136</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Cluster Magic Numbers</td>
<td>139</td>
</tr>
<tr>
<td>4.4</td>
<td>Metal Clusters</td>
<td>144</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Structure and Properties of Small Metal Clusters</td>
<td>144</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Accounting for Many-Body Interactions</td>
<td>147</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Validation of Classical Description of Systems on the Atomic Scale</td>
<td>149</td>
</tr>
<tr>
<td>4.5</td>
<td>Carbon Clusters: Fullerenes</td>
<td>153</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Classical Approach to Formation and Fragmentation of Fullerenes</td>
<td>155</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Electronic Structure Versus Geometry</td>
<td>160</td>
</tr>
<tr>
<td>4.6</td>
<td>Deposited Clusters and Nanoparticles</td>
<td>165</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Liquid Drop Model Versus MD for a Cluster on a Surface</td>
<td>165</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Shell-Correction Approach to Semi-spheroidal Atomic Clusters</td>
<td>168</td>
</tr>
<tr>
<td>5</td>
<td>Biomolecular Systems</td>
<td>171</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>171</td>
</tr>
<tr>
<td>5.2</td>
<td>Phase and Structural Transitions in Polypeptide Chains</td>
<td>172</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Statistical Model for The α-Helix ↔ Random Coil Phase Transition</td>
<td>173</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Energetics of Alanine Polypeptide</td>
<td>175</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Correlation of Different Amino Acids in the Polypeptide</td>
<td>185</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Molecular Dynamics Simulations of π-Helix ↔ Random Coil Phase Transition</td>
<td>186</td>
</tr>
<tr>
<td>5.3</td>
<td>DNA Unzipping</td>
<td>189</td>
</tr>
<tr>
<td>5.3.1</td>
<td>Methods of Simulations</td>
<td>191</td>
</tr>
<tr>
<td>5.3.2</td>
<td>Modeling the DNA Duplex Unzipping</td>
<td>193</td>
</tr>
<tr>
<td>6</td>
<td>Nanostructured Materials</td>
<td>199</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>199</td>
</tr>
<tr>
<td>6.2</td>
<td>Modeling Carbon Nanostructures</td>
<td>201</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Carbon Allotropes</td>
<td>201</td>
</tr>
<tr>
<td>6.2.2</td>
<td>Carbon Nanotubes and Their Basic Properties</td>
<td>203</td>
</tr>
<tr>
<td>6.2.3</td>
<td>Molecular Dynamics of Carbon Nanotube Growth</td>
<td>210</td>
</tr>
<tr>
<td>6.3</td>
<td>Stability and Fragmentation of Metal Nanowires</td>
<td>214</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Using KMC Method of MBN EXPLORER to Model Nanowire Fragmentation</td>
<td>215</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Results of Simulation</td>
<td>216</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>6.4</td>
<td>Crystalline Superlattice of Nanoparticles</td>
<td>220</td>
</tr>
<tr>
<td>6.4.1</td>
<td>C\textsubscript{60} Crystals and Nanowires</td>
<td>220</td>
</tr>
<tr>
<td>6.4.2</td>
<td>Modeling C\textsubscript{60}-TMB Superlattice</td>
<td>220</td>
</tr>
<tr>
<td>6.4.3</td>
<td>Asymmetric Growth of the C\textsubscript{60}-TMB Superlattice</td>
<td>223</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Outlook for Modeling Other Superlattices</td>
<td>228</td>
</tr>
<tr>
<td>6.5</td>
<td>Self-assembly, Growth, Surface Pattern Formation</td>
<td>228</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Silver Nanoparticle Self-assembly on a Graphite Surface</td>
<td>229</td>
</tr>
<tr>
<td>6.5.2</td>
<td>Comparison of 3D with 2D Morphologies on a Surface</td>
<td>232</td>
</tr>
<tr>
<td>6.6</td>
<td>Nanofractals and Morphological Transitions</td>
<td>237</td>
</tr>
<tr>
<td>6.6.1</td>
<td>Experimental Observation and Characterization of Morphological Transition</td>
<td>239</td>
</tr>
<tr>
<td>6.6.2</td>
<td>Theoretical Description of Morphological Transition</td>
<td>242</td>
</tr>
<tr>
<td>7</td>
<td>Composite Systems and Material Interfaces</td>
<td>255</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>255</td>
</tr>
<tr>
<td>7.2</td>
<td>Nanoparticles in Biological Environments</td>
<td>256</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Radiosensitizing Nanoparticles</td>
<td>256</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Simulation of Coated Gold Nanoparticles in Water Environment</td>
<td>257</td>
</tr>
<tr>
<td>7.3</td>
<td>Nanoalloys and Composite Metal Systems</td>
<td>262</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Many-Body Potentials for Nanoalloys and Composite Systems</td>
<td>262</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Modeling Titanium and Nickel-Titanium Samples</td>
<td>264</td>
</tr>
<tr>
<td>7.4</td>
<td>Atomic, Molecular and NP Diffusion</td>
<td>265</td>
</tr>
<tr>
<td>7.4.1</td>
<td>Basics of the Diffusion Process</td>
<td>266</td>
</tr>
<tr>
<td>7.4.2</td>
<td>Diffusion at Ti-Ni Interfaces</td>
<td>268</td>
</tr>
<tr>
<td>7.4.3</td>
<td>Diffusion of Nickel Cluster at the Interface of Titanium and Water</td>
<td>269</td>
</tr>
<tr>
<td>7.5</td>
<td>Diffusion at Interfaces</td>
<td>271</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Theoretical and Computational Aspects</td>
<td>271</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Results of Numerical Simulations</td>
<td>274</td>
</tr>
<tr>
<td>8</td>
<td>Thermo-Mechanical Properties of Materials</td>
<td>277</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>277</td>
</tr>
<tr>
<td>8.2</td>
<td>Simulation of Thermo-Mechanical Properties Up to the Bulk Limit</td>
<td>279</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Modification of the EAM Potential</td>
<td>280</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Simulations of Metal Melting with the Modified EAM potential</td>
<td>282</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>8.3</td>
<td>Nanoindentation</td>
<td>286</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Modeling the Crystals and the Indenter</td>
<td>288</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Simulation of the Nanoindentation Process</td>
<td>289</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Quantification of Mechanical Properties</td>
<td>292</td>
</tr>
<tr>
<td>8.4</td>
<td>Nanoscale Phase Transitions</td>
<td>295</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Melting Phase Transitions on the Nanoscale</td>
<td>295</td>
</tr>
<tr>
<td>8.4.2</td>
<td>Martensite-Austenite Phase Transition on the Nanoscale</td>
<td>307</td>
</tr>
<tr>
<td>8.5</td>
<td>Thermodynamic Model for Protein Folding</td>
<td>310</td>
</tr>
<tr>
<td>8.5.1</td>
<td>Theoretical Methods</td>
<td>312</td>
</tr>
<tr>
<td>8.5.2</td>
<td>Verification of the Model Through Experiment</td>
<td>317</td>
</tr>
<tr>
<td>9</td>
<td>Collisional Processes Involving MBN Systems</td>
<td>323</td>
</tr>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>323</td>
</tr>
<tr>
<td>9.2</td>
<td>Collision Processes Involving Atomic Clusters and NPs</td>
<td>326</td>
</tr>
<tr>
<td>9.3</td>
<td>Collision Processes Involving Biomolecules</td>
<td>335</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Electrons and Biomolecular Interactions</td>
<td>337</td>
</tr>
<tr>
<td>9.3.2</td>
<td>Ions and Biomolecular Interactions</td>
<td>339</td>
</tr>
<tr>
<td>9.4</td>
<td>Particles Propagation Through Medium</td>
<td>345</td>
</tr>
<tr>
<td>9.5</td>
<td>Collision Induced Fragmentation Processes</td>
<td>352</td>
</tr>
<tr>
<td>9.5.1</td>
<td>Water Splitting</td>
<td>353</td>
</tr>
<tr>
<td>9.5.2</td>
<td>Fragmentation of Alanine Dipeptide</td>
<td>356</td>
</tr>
<tr>
<td>9.5.3</td>
<td>Binding of Two Alanine Amino Acids</td>
<td>357</td>
</tr>
<tr>
<td>9.6</td>
<td>Molecular Desorption Processes</td>
<td>359</td>
</tr>
<tr>
<td>9.7</td>
<td>Thermo-Mechanical Effects in Collision Processes</td>
<td>362</td>
</tr>
<tr>
<td>9.7.1</td>
<td>Hydrodynamic Expansion on the Nanometre Scale</td>
<td>363</td>
</tr>
<tr>
<td>9.7.2</td>
<td>MD Simulations of Ion-induced Shock Waves</td>
<td>364</td>
</tr>
<tr>
<td>9.7.3</td>
<td>Damaging Effects Due to Shock Waves</td>
<td>366</td>
</tr>
<tr>
<td>9.7.4</td>
<td>Evaluation of the Shock Wave damaging effect</td>
<td>368</td>
</tr>
<tr>
<td>9.7.5</td>
<td>Transport of Reactive Species by the Radial Collective Flow</td>
<td>370</td>
</tr>
<tr>
<td>10</td>
<td>Novel and Emerging Technologies</td>
<td>373</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>373</td>
</tr>
<tr>
<td>10.2</td>
<td>Crystalline Undulator as a Novel Light Source</td>
<td>374</td>
</tr>
<tr>
<td>10.3</td>
<td>Fundamental Nanoscopic Processes in Ion Beam Cancer Therapy</td>
<td>384</td>
</tr>
<tr>
<td>10.3.1</td>
<td>Basic Facts About Ion Beam Cancer Therapy</td>
<td>384</td>
</tr>
<tr>
<td>10.3.2</td>
<td>Multiscale Scenario of Radiation Damage</td>
<td>388</td>
</tr>
</tbody>
</table>
10.4 Surface Deposition Technologies: The Case of FEBID 390
 10.4.1 Surface Deposition Techniques and Irradiation
 Driven Chemistry .. 390
 10.4.2 Modeling of FEBID with IDMD 392
 10.4.3 Results of Simulations and Their Validation 397

11 Future Outlook .. 403
 11.1 State-of-the-art and Outlook 403
 11.2 Further Development of MBN EXPLORER and MBN STUDIO . 404
 11.3 How to Get MBN EXPLORER and MBN STUDIO? 408

References ... 411

Index ... 447
Multiscale Modeling of Complex Molecular Structure and Dynamics with MBN Explorer
Solovyov, I.A.; Korol, A.; Solov'yov, A.
2017, XV, 451 p. 209 illus., 202 illus. in color., Hardcover
ISBN: 978-3-319-56085-4