Contents

1 Introduction and Literature Review .. 1
 1.1 Research Background of the Piezoresistive Effect in SiC 1
 1.2 Silicon Carbide as a Material for MEMS Applications 3
 1.2.1 Crystalline Structure and Physical Properties 3
 1.2.2 Growth Process of SiC 4
 1.2.3 MEMS Fabrication Process 6
 1.3 Piezoresistive Effect of Silicon Carbide 10
 1.3.1 Definition of the Piezoresistance 10
 1.3.2 Piezoresistance of Silicon Carbide 11
 1.3.3 Applications of Silicon Carbide Piezoresistive Effect ... 20
 1.4 Summary of the Literature Review and the Aims of This
 Dissertation ... 23
 1.4.1 Perspective of the Piezoresistive Effect in SiC 23
 1.4.2 The Aims of This Research 23
 References .. 24

2 Theory of the Piezoresistive Effect in p-Type 3C-SiC 31
 2.1 Energy Band of 3C-SiC 31
 2.1.1 Crystallographic and Energy Band Structure of 3C-SiC ... 31
 2.1.2 Principle of the Piezoresistive Effect in p-Type 3C-SiC .. 35
 2.2 The Piezoresistive Coefficients of 3C-SiC 41
 2.2.1 Definition of the Piezoresistive Coefficients 41
 2.2.2 Piezoresistive Coefficients of Two-Terminal
 and Four-Terminal Resistors 43
 2.2.3 Piezoresistive Coefficients in Arbitrary Cartesian
 Coordinate .. 45
 References .. 46
3C-SiC Film Growth and Sample Preparation

- **3.1 Growth of Single Crystalline 3C-SiC**
- **3.1.1 The LPCVD Process of p-Type 3C-SiC**
- **3.1.2 Optical Characterization of the As-Grown 3C-SiC Film**
- **3.1.3 Electrical Properties of the As-Grown 3C-SiC Films**
- **3.2 Fabrication of 3C-SiC Piezoresistors**
- **3.3 Characterization of Ohmic Contact of SiC Resistors and Leakage Current to the Substrate**

Characterization of the Piezoresistive Effect in p-Type Single Crystalline 3C-SiC

- **4.1 Measurement Method**
- **4.2 Measurement Results at Room Temperature**
 - **4.2.1 The Gauge Factors of Two Terminal p-Type 3C-SiC**
 - **4.2.2 Piezoresistive Coefficients of Single Crystalline 3C-SiC**
 - **4.2.3 Thickness Dependence of the Piezoresistive Effect of p-Type 3C-SiC Nano Thin Films**
- **4.3 The Piezoresistive Effect in p-Type 3C-SiC at High Temperatures**
 - **4.3.1 Methodology and Sample Preparation**
 - **4.3.2 The Piezoresistive Effect of the Suspended 3C-SiC at Room Temperature**
 - **4.3.3 The Themoresistive Effect of 3C-SiC**
 - **4.3.4 Joule Heating Effect in Suspended SiC Structures**
 - **4.3.5 Coupling the Piezo- and Thermo-Resistive Effects in SiC**
- **4.4 The Piezoresistive Effect in Four-Terminal SiC Resistors**
 - **4.4.1 Configuration of SiC Four-Terminal Resistors**
 - **4.4.2 Shear Piezoresistive Coefficients in Four-Terminal Resistors**
 - **4.4.3 Orientation Dependence of the Piezoresistive Effect in Four-Terminal Resistors**

The Piezoresistive Effect in p-Type Nanocrystalline SiC

- **5.1 Growth Process of Nanocrystalline SiC on Si**
- **5.2 Characterization of the Gauge Factor in p-Type Nanocrystalline SiC**
- **5.3 Discussion**

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>51</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>59</td>
</tr>
<tr>
<td>61</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>66</td>
</tr>
<tr>
<td>72</td>
</tr>
<tr>
<td>75</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>81</td>
</tr>
<tr>
<td>83</td>
</tr>
<tr>
<td>85</td>
</tr>
<tr>
<td>87</td>
</tr>
<tr>
<td>91</td>
</tr>
<tr>
<td>91</td>
</tr>
<tr>
<td>93</td>
</tr>
<tr>
<td>97</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>101</td>
</tr>
<tr>
<td>103</td>
</tr>
<tr>
<td>105</td>
</tr>
<tr>
<td>107</td>
</tr>
</tbody>
</table>
6 The Piezoresistive Effect of Top Down p-Type 3C-SiC Nanowires .. 109
 6.1 Piezoresistance of Non-released SiC Nanowires ... 109
 6.1.1 Fabrication of Top Down SiC Nanowires .. 109
 6.1.2 The Gauge Factor of the Non-released SiC Nanowires 110
 6.2 The Piezoresistance of Suspended SiC Nanowire Using Nano-strain Amplifier 112
 6.2.1 The Principle of the Nano-strain Amplifier 113
 6.2.2 Demonstration of Nano Strain-Amplifier in p-Type 3C-SiC Nanowires 115
 References ... 117

7 Conclusion and Perspectives ... 119
 7.1 Conclusion ... 119
 7.2 Research Perspectives .. 121

Appendix A: Process Flow of the SiC/Si Beam .. 123

Appendix B: Estimation of the Error Between the Simulation and the Actual Results of the Strain in 3C-SiC Resistor .. 129

Appendix C: Estimation of the Piezoresistance in 3C-SiC Using the PZR Coefficients .. 131

Appendix D: Estimation of the GF of 3C-SiC Films with Different Thicknesses .. 135

Appendix E: In Situ Characterization of the Strain Effect on p-Type 3C-SiC at High Temperatures 139

Appendix F: Orientation Dependence of the Piezoresistive Effect in p-Type 3C-SiC Four-Terminal Resistors 141

About the Author .. 145
Piezoresistive Effect of p-Type Single Crystalline 3C-SiC Silicon Carbide Mechanical Sensors for Harsh Environments
Phan, H.-P.
2017, XXI, 146 p. 94 illus., 3 illus. in color., Hardcover
ISBN: 978-3-319-55543-0