Contents

1 Physico-Mathematical Models of Relaxing Molecular Gas Flows ... 1
 1.1 Elements of Physical Kinetics 2
 1.2 Systems of Equations of Relaxation Gas Dynamics 5
 1.2.1 One-Temperature Models of the Flow 6
 1.2.2 Two-Temperature Models of Relaxing Flows 9
 1.2.3 Landau–Teller Equation 13
 1.3 Parameters of Thermal Relaxation in Diatomic Gases 15
 1.3.1 Bulk Viscosity Phenomenon 16
 1.3.2 Rotational Relaxation 20
 1.3.3 Vibrational Relaxation 28
 1.4 Absorption of Acoustic Waves in the Relaxation Process .. 30
References .. 32

2 Linear Stability of Inviscid Plane-Parallel Flows of Vibrationally Excited Diatomic Gases 35
 2.1 Equations of the Linear Stability Theory 36
 2.2 Some General Necessary Conditions of Instability Growth 37
 2.3 Growth Rates and Eigenfunctions of Unstable Inviscid Modes
 in a Free Shear Flow ... 43
 2.3.1 Formulation of the Problem 43
 2.3.2 Numerical Method and Results 45
References .. 49

3 Linear Stability of Supersonic Plane Couette Flow of Vibrationally Excited Gas 51
 3.1 Statement of Problem and Basic Equations 53
 3.2 Inviscid Stability Problem 58
 3.2.1 Linear Equations for Inviscid Disturbances 58
 3.2.2 Necessary Instability Conditions of Inviscid Modes ... 59

References .. 32
3.2.3 Numerical Collocation Method for Spectral Problem........ 64
3.2.4 Effect of Vibrational Relaxation on Growth
of Second Acoustic Mode 67

3.3 Linear Stability of Supersonic Couette Flow at Finite
Reynolds Numbers ... 71
3.3.1 Numerical Calculations of Spectral Problem 71
3.3.2 Structure of Spectra of Viscous Disturbances........... 73
3.3.3 Neutral Stability Contours and Critical Reynolds
Numbers .. 77

References .. 84

4 Asymptotic Theory of Neutral Linear Stability Contours
in Plane Shear Flows of a Vibrationally Excited Gas 85
4.1 Asymptotic Solutions of Linear Stability Equations 87
4.1.1 Asymptotics of Inviscid Solutions in Neighborhood
of a Singular Point ... 88
4.1.2 Asymptotics of Viscous Solutions at High Reynolds
Numbers ... 90

4.2 Asymptotics of a Neutral Stability Curve of the Supersonic
Couette Flow of a Vibrationally Excited Gas 96
4.2.1 Secular Equation and Its Solution 96
4.2.2 Asymptotics of the Critical Reynolds Numbers and
Branches of the Neutral Stability Curve 103
4.2.3 Numerical Calculations of Secular Equation 106

References .. 109

5 Energy Theory of Nonlinear Stability of Plane Shear Flows
of Thermally Nonequilibrium Gas 111
5.1 Energy Stability Analysis of a Plane Compressible Flow.
Effect of a Bulk Viscosity 113
5.1.1 Basic Equations and Functionals 113
5.1.2 Variational Problem. Quality Properties
and Asymptotics of Low Critical Reynolds Numbers 118
5.1.3 Results of Numerical Calculation of the Spectral
Problem .. 127

5.2 Energy Stability Analysis of a Plane Vibrationally
Excited Flow. Effect of a Vibrational Relaxation 131
5.2.1 Energy Balance Equation of Total Disturbances 131
5.2.2 Asymptotics of Low Critical Reynolds Numbers 136
5.2.3 Numerical Calculation of Low Critical Reynolds
Numbers .. 144

References .. 151
6 Evolution of a Large-Scale Vortex in Shear Flow of a Relaxing Molecular Gas .. 153
 6.1 Navier–Stokes Model Flow. Effect of Bulk Viscosity 154
 6.1.1 Parametrization of a Model Flow 154
 6.1.2 Basic Equations and Initial-Boundary Conditions .. 156
 6.1.3 Numerical Calculations of a Model Flow 160
 6.2 Effect of a Vibrational Relaxation on Damping Vortex Structure 164
 6.2.1 Basic Equations and Initial-Boundary Conditions .. 164
 6.2.2 Numerical Scheme and Results of Calculations 166
 References ... 169

7 Dissipation of the Kelvin–Helmholtz Waves in a Relaxing Molecular Gas .. 171
 7.1 Nonlinear Evolution of the Kelvin–Helmholtz Instability in the Navier–Stokes Model 172
 7.1.1 Formulation of the Problem 172
 7.1.2 Calculation of Initial Perturbations 174
 7.1.3 Numerical Calculations of the Evolution of Perturbations .. 176
 7.1.4 Effect of Bulk Viscosity on Vorticity Kinematics 177
 7.1.5 Dissipation of the Kinetic Energy of Disturbances 182
 7.2 Effect of a Vibrational Relaxation on the Kelvin–Helmholtz Instability 189
 7.2.1 Formulation of Problem 189
 7.2.2 Evolution of Disturbances in a Vibrationally Nonequilibrium Diatomic Gas 191
 References ... 198

Index .. 199
Stability and Suppression of Turbulence in Relaxing Molecular Gas Flows
Grigoryev, Y.N.; Ershov, I.V.
2017, XXXII, 201 p. 53 illus., 2 illus. in color., Hardcover
ISBN: 978-3-319-55359-7