Contents

1 Physico-Mathematical Models of Relaxing Molecular Gas Flows ... 1
1.1 Elements of Physical Kinetics ... 2
1.2 Systems of Equations of Relaxation Gas Dynamics 5
 1.2.1 One-Temperature Models of the Flow 6
 1.2.2 Two-Temperature Models of Relaxing Flows 9
 1.2.3 Landau–Teller Equation ... 13
1.3 Parameters of Thermal Relaxation in Diatomic Gases 15
 1.3.1 Bulk Viscosity Phenomenon 16
 1.3.2 Rotational Relaxation ... 20
 1.3.3 Vibrational Relaxation ... 28
1.4 Absorption of Acoustic Waves in the Relaxation Process 30
References .. 32

2 Linear Stability of Inviscid Plane-Parallel Flows of Vibrationally Excited Diatomic Gases 35
2.1 Equations of the Linear Stability Theory 36
2.2 Some General Necessary Conditions of Instability Growth 37
2.3 Growth Rates and Eigenfunctions of Unstable Inviscid Modes
 in a Free Shear Flow .. 43
 2.3.1 Formulation of the Problem 43
 2.3.2 Numerical Method and Results 45
References .. 49

3 Linear Stability of Supersonic Plane Couette Flow of Vibrationally Excited Gas .. 51
3.1 Statement of Problem and Basic Equations 53
3.2 Inviscid Stability Problem .. 58
 3.2.1 Linear Equations for Inviscid Disturbances 58
 3.2.2 Necessary Instability Conditions of Inviscid Modes 59
3.2.3 Numerical Collocation Method for Spectral Problem 64
3.2.4 Effect of Vibrational Relaxation on Growth of Second Acoustic Mode .. 67

3.3 Linear Stability of Supersonic Couette Flow at Finite Reynolds Numbers ... 71
3.3.1 Numerical Calculations of Spectral Problem 71
3.3.2 Structure of Spectra of Viscous Disturbances 73
3.3.3 Neutral Stability Contours and Critical Reynolds Numbers ... 77

References ... 84

4 Asymptotic Theory of Neutral Linear Stability Contours in Plane Shear Flows of a Vibrationally Excited Gas 85

4.1 Asymptotic Solutions of Linear Stability Equations 87
4.1.1 Asymptotics of Inviscid Solutions in Neighborhood of a Singular Point 88
4.1.2 Asymptotics of Viscous Solutions at High Reynolds Numbers .. 90

4.2 Asymptotics of a Neutral Stability Curve of the Supersonic Couette Flow of a Vibrationally Excited Gas 96
4.2.1 Secular Equation and Its Solution 96
4.2.2 Asymptotics of the Critical Reynolds Numbers and Branches of the Neutral Stability Curve 103
4.2.3 Numerical Calculations of Secular Equation 106

References ... 109

5 Energy Theory of Nonlinear Stability of Plane Shear Flows of Thermally Nonequilibrium Gas .. 111

5.1 Energy Stability Analysis of a Plane Compressible Flow.
Effect of a Bulk Viscosity .. 113
5.1.1 Basic Equations and Functionals 113
5.1.2 Variational Problem. Quality Properties and Asymptotics of Low Critical Reynolds Numbers 118
5.1.3 Results of Numerical Calculation of the Spectral Problem .. 127

5.2 Energy Stability Analysis of a Plane Vibrationally Excited Flow. Effect of a Vibrational Relaxation 131
5.2.1 Energy Balance Equation of Total Disturbances 131
5.2.2 Asymptotics of Low Critical Reynolds Numbers 136
5.2.3 Numerical Calculation of Low Critical Reynolds Numbers ... 144

References ... 151
Stability and Suppression of Turbulence in Relaxing Molecular Gas Flows
Grigoryev, Y.N.; Ershov, I.V.
2017, XXXII, 201 p. 53 illus., 2 illus. in color., Hardcover
ISBN: 978-3-319-55359-7