Contents

1 Amphoteric Metal Hazardous Wastes and Hydrometallurgical Processes of Zinc and Lead .. 1
 1.1 Amphoteric Metal Hazardous Wastes 2
 1.2 Pyrometallurgical Treatment Processes for Zinc and Lead . 4
 1.3 Stabilization of Heavy Metals for Hazardous Wastes 4
 1.4 Acidic Leaching Process for Zinc and Lead Ores and Wastes . . 5
 1.5 Alkaline Leaching Process for Zinc and Lead Ores and Wastes ... 5
 1.6 Hydrometallurgical Production of Zinc 6
 1.7 Metallurgy of Lead .. 9
 1.7.1 Oxidation-Reduction Smelting 9
 1.7.2 Reaction-Melting 10
 1.7.3 Precipitation Melting 10
 1.7.4 Alkali Melting 11

2 Thermodynamics of Alkaline Leaching of Zinc and Lead Hazardous Wastes .. 13
 2.1 Thermodynamics of Alkaline Leaching of Zinc Hazardous Wastes ... 13
 2.1.1 Morphology Distribution of Zinc in Alkaline Solution ... 13
 2.1.2 Experimental Verification 17
 2.1.3 Apparent Equilibrium Constant for Zinc Dissolved in NaOH Solution ... 18
 2.1.4 E-pH Equilibrium Diagrams of Leaching Systems of Zinc ... 18
 2.2 Thermodynamics of Alkaline Leaching of Solid Wastes Bearing Lead ... 25
 2.2.1 Morphology Distribution of Lead in Alkaline Solution ... 25
2.2.2 E-pH Equilibrium Diagrams of Leaching Systems of Lead .. 26

2.3 Thermodynamics of Alkaline Leaching of Impurity Ions 32
 2.3.1 Thermodynamic Behavior of Cu(II) in Alkaline Solution 32
 2.3.2 Thermodynamic Behavior of Co(II) in Alkaline Solution 33
 2.3.3 Thermodynamic Behavior of Cd(II) in Alkaline Solution 34
 2.3.4 Thermodynamic Behavior of Fe(III) in Alkaline Solution 36
 2.3.5 Thermodynamic Behavior of Ni(II) in Alkaline Solution 36
 2.3.6 Thermodynamic Behavior of Mg(II) in Alkaline Solution 37
 2.3.7 Thermodynamic Behavior of Ca(II) in Alkaline Solution 38

3 Kinetics of Alkaline Leaching of Solid Wastes Bearing Zinc and Lead ... 39
 3.1 Kinetics Model of Leaching in Alkaline Solution ... 39
 3.2 Kinetics of Alkaline Leaching of Zinc Hazardous Wastes 43
 3.2.1 Alkaline Leaching Kinetic Analysis of Waste Bearing Zinc 44
 3.2.2 Alkaline Leaching Kinetic Analysis of Zinc Carbonate 45
 3.2.3 Alkaline Leaching Kinetic Analysis of Zinc Silicate 48
 3.2.4 Impact Factors of Zinc Alkaline Leaching Process 50
 3.3 Kinetic Analysis of Alkaline Leaching of Lead Oxide Ore 54
 3.3.1 Effects of Temperature on Reaction Rate of Alkaline Leaching of Lead Oxide Ore 54
 3.3.2 Effects of NaOH Concentration on Reaction Rate of Alkaline Leaching of Lead Oxide Ore 56
 3.3.3 Effects of Particle Size on Reaction Rate of Alkaline Leaching of Lead Oxide Ore 58

4 Leaching of Zinc and Lead Hazardous Wastes in Alkaline Solutions 61
 4.1 Leaching of Zinc and Lead Dust from Steelmaking Plants with Lower Iron Contents in Alkaline Solutions .. 62
 4.1.1 Effects of Leaching Time for Leaching of Zinc and Lead Dust in Alkaline Solutions 62
 4.1.2 Effects of Liquid-Solid Ratio on Leaching of Zinc and Lead Dust in Alkaline Solutions 62
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1.3</td>
<td>Effects of NaOH Concentration in Leaching Agent on Leaching of Zinc and Lead Dust in Alkaline Solutions</td>
<td>64</td>
</tr>
<tr>
<td>4.1.4</td>
<td>Sequential and Multistage Leaching of Dust in Alkaline</td>
<td>65</td>
</tr>
<tr>
<td>4.1.5</td>
<td>Tests on the Leaching Enhancement for Leaching Residues</td>
<td>66</td>
</tr>
<tr>
<td>4.2</td>
<td>Extraction of Zinc from Dust by Direct Melting with Solid NaOH</td>
<td>66</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Effects of Melting Time for Extraction of Zinc from Dust by Direct Melting with Solid NaOH</td>
<td>67</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Effects of Leaching Time on Extraction of Zinc from Dust by Direct Melting with Solid NaOH</td>
<td>67</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Effects of Mass Ratios of Dust to Solid NaOH in the melts on leaching</td>
<td>68</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Effects of NaOH Concentration on Leaching</td>
<td>68</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Effects of Temperature on Extraction of Zinc from Dust by Direct Melting with Solid NaOH</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>Extraction of Zinc from Leaching Residues by Melting the Residues with Solid NaOH</td>
<td>70</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Effects of Melting Time on the Extraction of Zinc from the Leaching Residues</td>
<td>70</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Effects of Melting Temperature on the Extraction of Zinc from Leaching Residues by Melting the Residues with Solid NaOH</td>
<td>70</td>
</tr>
<tr>
<td>4.3.3</td>
<td>Effects of Leaching Time on the Extraction of Zinc from Leaching Residues Melted with Solid NaOH</td>
<td>71</td>
</tr>
<tr>
<td>4.3.4</td>
<td>Effects of NaOH Concentration on the Extraction of Zinc from Leaching Residues Melted with Solid NaOH</td>
<td>71</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Melting with Sodium Phosphate Instead of Sodium Hydroxide</td>
<td>73</td>
</tr>
<tr>
<td>4.3.6</td>
<td>Composition of Leaching Solution of the Melts and the Resultant Zn-Free Residues</td>
<td>73</td>
</tr>
<tr>
<td>4.4</td>
<td>Extraction of Zinc from Dust via Hydrolysis-Melting-Leaching Process</td>
<td>74</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Effects of Melting Temperature on Extraction of Zinc from Dust via Hydrolysis-Melting-Leaching Process</td>
<td>74</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Effects of NaOH Concentration in Leaching Agent on the Extraction of Zinc from Dust via Hydrolysis-Melting-Leaching Process</td>
<td>75</td>
</tr>
</tbody>
</table>
4.4.3 Effects of Leaching Time on Extraction of Zinc from Dust via Hydrolysis-Melting-Leaching Process 75
4.4.4 Effects of NaOH/Dust Mass Ratios in the Melt on the Extraction of Zinc from Dust via Hydrolysis-Melting-Alkaline Leaching Process 76
4.4.5 Effects of Water-Dust Ratio and Hydrolysis Time in the Hydrolysis Step via Hydrolysis-Melting-Alkaline Leaching Process 77
4.4.6 Composition of the Supernatant in the Hydrolysis of Dust in the Hydrolysis Step via Hydrolysis-Melting-Alkaline Leaching Process 77
4.4.7 Recycling of the Filtrate for the Hydrolysis of Dust in the Hydrolysis Step via Hydrolysis-Melting-Alkaline Leaching Process 78
4.4.8 Effects of the Addition on the Melting and Extraction of Zinc from Dust via Hydrolysis-Melting-Leaching Process 79
4.4.9 Effects of Liquid-Solid Ratio on the Extraction of Zinc from Melted Dust via Hydrolysis-Melting-Leaching Process 79
4.4.10 Relationships Between Zinc Extractability and the Zinc and Iron Contents in the Dust by Direct Leaching Process 82
4.4.11 Chemical Reactions in the Melting and Alkaline Leaching Processes 83
4.5 Scale-Up Experiments on Extraction of Zinc from Dust via Hydrolysis-Melting-Alkaline Leaching Process 84
4.6 Extraction of Lead and Other Metals from Zinc and Lead Hazardous Wastes in Alkaline Solution 86
4.7 Typical Composition and Supposed Treatment of the Alkaline Solution Leaching Residues 88
4.8 Alkaline Treatment of Low-Leachable Zinc and Lead Hazardous Wastes with High Iron Contents 89
4.8.1 Direct Alkaline Leaching of Low-Leachable Zinc and Lead Hazardous Wastes with High Iron Contents 89
4.8.2 Melting and then Alkaline Leaching of the Leaching Residues Shown in Table 4.26 90
4.8.3 Melting and Alkaline Leaching of the Original and Hydrolyzed Dust with Higher Iron Contents 91
4.9 Alkaline Leaching of Zinc Sulfide in Alkaline Solution via Chemical Conversion with Lead Carbonates 92
4.9.1 Effects of Pb/ZnS Mole Ratio on Leaching of Zinc Sulfide in Alkaline Solution via Chemical Conversion with Lead Carbonates 93
4.9.2 Effects of NaOH Concentrations on Leaching of Zinc Sulfide in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 94
4.9.3 Effects of Temperature on Leaching of Zinc Sulfide in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 94
4.9.4 Effects of Liquid-Solid Ratio on Leaching of Zinc Sulfide in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 95
4.9.5 Effects of Leaching Time on Leaching of Zinc Sulfide in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 96
4.9.6 Effects of Type of Initial Lead Content for Leaching of Zinc Sulfide in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 97
4.9.7 Conversion of Leach Residue for Leaching of Zinc Sulfide in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 97

4.10 Mechanochemical Leaching of Sphalerite in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 99
4.10.1 Effects of Activation and Leaching Modes on Mechanochemical Leaching of Sphalerite in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 101
4.10.2 Effects of Stirring Speed on Mechanochemical Leaching of Sphalerite in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 103
4.10.3 Effects of Activation Medium on Mechanochemical Leaching of Sphalerite in Alkaline Solution via Chemical Conversion with Lead Carbonates .. 103
4.10.4 Process of Mechanochemical Leaching of Low-Grade Zinc Oxide Ore Containing Sphalerite .. 104

4.11 Other Enhanced Leaching Methods of Zinc Hazardous Wastes in Alkaline Solution .. 105
4.11.1 Leaching Process Enhanced by Microwave .. 105
4.11.2 Leaching Process Enhanced by Pressure .. 108
4.11.3 Ultrasound-Enhanced Leaching Process .. 109

4.12 Recovery of Lead from CRT Funnel Glass by Mechanochemical Extraction in Alkaline Solution .. 113
4.12.1 Effects of Activation Modes on Recovery of Lead from CRT Funnel Glass by Mechanochemical Extraction in Alkaline Solution .. 115
4.12.2 Effects of Mechanochemical Leaching Modes for Recovery of Lead from CRT Funnel Glass by Mechanochemical Extraction in Alkaline Solution 116

4.12.3 Effects of Stirring Speed on Recovery of Lead from CRT Funnel Glass by Mechanochemical Extraction in Alkaline Solution 116

4.12.4 Electrowinning of Lead Powder for Recovery of Lead from CRT Funnel Glass by Mechanochemical Extraction in Alkaline Solution 117

4.13 Extraction of Lead from Spent Leaded Glass in Alkaline Solution by Mechanochemical Reduction with Metallic Iron ... 119

4.13.1 Effects of Fe/Leaded Glass Ratios for Extraction of Lead from Spent Leaded Glass in Alkaline Solution by Mechanochemical Reduction with Metallic Iron 119

4.13.2 Effects of Rotate Speed for Extraction of Lead from Spent Leaded Glass in Alkaline Solution by Mechanochemical Reduction with Metallic Iron ... 121

4.13.3 Effects of Mechanochemical Reduction Time on Extraction of Lead from Spent Leaded Glass in Alkaline Solution by Mechanochemical Reduction with Metallic Iron 121

4.13.4 Analysis on Physicochemical Changes of Prepared Samples After Mechanochemical Reduction with Iron 121

4.13.5 Toxicity of Leaching Residues for Extraction of Lead from Spent Leaded Glass in Alkaline Solution by Mechanochemical Reduction with Metallic Iron ... 126

4.14 Alkaline Leaching Process of Fume Dust and Lead Oxide Ore ... 127

4.14.1 Alkaline Leaching Process for Pb and Zn Recovery from Fume Dust 127

4.14.2 Alkaline Leaching Process for Lead Oxide Ore 128

5 Purification of Leach Solution of Zinc and Lead in Alkaline Solutions .. 133

5.1 Selective Precipitation and Separation of Lead from Alkaline Zinc Hydroxide Solution 133

5.1.1 Selection of the Precipitants for Selective Precipitation and Separation of Lead from Alkaline Zinc Hydroxide Solution .. 134

5.1.2 Purification Mechanism of Na₂S 135
5.1.3 Effects of Mass Ratio of Sodium Sulfide Added to Lead or Zinc in Leaching Solutions 137
5.1.4 Co-removal of the Other Possible Soluble Coexistent Elements from Alkaline Zinc Hydroxide Solution Using Sodium Sulfide as Precipitant 139
5.1.5 Scale-Up Experiments on Selective Precipitation and Separation of Lead from Alkaline Zinc Hydroxide Solution Using Sodium Sulfide as Precipitant 139
5.1.6 Removal of Lead from Leaching Solution by the Addition of Solid Sodium Sulfide 140
5.1.7 Recovery of Zinc from Lead-Free Alkaline Leaching Solutions by Crystallization 141
5.1.8 Chemical Reactions Taking Place in the Sulfide Precipitation Processes in Alkaline Solution 143
5.1.9 The Optimized Condition of Na₂S Purification Process .. 143

5.2 Removal of Sn from Alkaline Zinc Solution by Zinc Powder Replacement 146
5.2.1 Effects of Zn/Sn Ratio for Removal of Sn from Alkaline Zinc Solution by Zinc Powder Replacement ... 147
5.2.2 Effects of Stirring Speed on Removal of Sn from Alkaline Zinc Solution by Zinc Powder Replacement .. 147
5.2.3 Effects of Temperature on Removal of Sn from Alkaline Zinc Solution by Zinc Powder Replacement .. 148
5.2.4 Effects of Initial Sn Concentration on Removal of Sn from Alkaline Zinc Solution by Zinc Powder Replacement .. 148
5.2.5 Process Optimization for Removal of Sn from Alkaline Zinc Solution by Zinc Powder Replacement .. 150

5.3 Removal of Al from Alkaline Zinc Solution .. 152
5.4 Removal of As from Alkaline Zinc Solution .. 153
5.5 Removal of Chloride from Alkaline Zinc Solution .. 156
5.5.1 Dechlorination via Overconcentration .. 156
5.5.2 Dechlorination by Washing via Na₂CO₃ Solution .. 158
5.5.3 Dechlorination by Water Washing from the Wastes .. 161

5.6 Deep Purification of Zinc Alkali Leaching Solution .. 164
5.6.1 Deep Purification Process of Lead, Aluminum, and Arsenic in Zinc Leaching Solution 164
5.6.2 Deep Purification Process Through Condensed Zinc-Containing Alkaline Solution 166
5.7 Removal of Cu from Alkaline Lead Solution by Lead Powder Replacement 167
5.7.1 Effects of Pb/Cu Ratio on Removing Rate of Cu from Alkaline Lead Solution 168
5.7.2 Effects of Replacement Reaction Time on Removal of Cu from Alkaline Lead Solution 168
5.7.3 Effects of Temperature on Removal of Cu from Alkaline Lead Solution 169
5.7.4 Effects of Initial Concentration of Copper on Removal Rate of Cu from Alkaline Lead Solution .. 170
5.7.5 Effects of NaOH Concentrations on Removal of Cu from Alkaline Lead Solution 170

6 Electrowinning of Zinc and Lead from Alkaline Solutions 171
6.1 General Electrowinning Production Process of Zinc Powder by Alkaline Hydrometallurgy 171
6.2 Production of Ultrafine Zinc Powder from Wastes Bearing Zinc by Electrowinning in Alkaline Solution .. 174
6.3 Effects of Organic Additives on the Electrolytic Zinc Powder Refinement in Alkaline Electrolyte ... 182
 6.3.1 Effects of Cetyltrimethylammonium Bromide and Sodium Lauryl Sulfate on Zinc Electrowinning in Alkaline Electrolyte ... 182
 6.3.2 Effects of Single Organic Additive Among β-CD, SDS, Gelatin, Casein, and Thiocarbamide in the Alkaline Electrolyte ... 193
 6.3.3 Synergistic Effects of T-80 and PEG Organic Additives to the Alkaline Electrolyte on Zn Electrodeposits Refinement ... 194
 6.3.4 Zinc Powder Particle Size Distribution in the Presence of Organic Additives in Alkaline Electrolyte ... 195
6.4 Effects of Ion Impurities on Zinc Electrowinning Process in Alkaline Leaching Solution ... 196
 6.4.1 Effects of Sn on Zinc Electrolysis in Alkaline Leaching Solution .. 196
 6.4.2 Effects of Al on Zinc Electrolysis in Alkaline Leach Solution ... 199
 6.4.3 Effects of As on Zinc Electrolysis in Alkaline Leaching Solution 204
 6.4.4 Effects of CO$_3^{2-}$, SO$_4^{2-}$, and SiO$_3^{2-}$ Concentrations on Zinc Electrolysis in Alkaline Leaching Solution ... 207
 6.4.5 Effects of F$^-$ and Cl$^-$ Concentrations on Zinc Electrolysis in Alkaline Leach Solution 208
6.4.6 Effect of Hypochlorite on Zinc Electrolysis in Alkaline Leaching Solution ... 209
6.4.7 Effects of Sulfide on Zinc Electrolysis in Alkaline Leaching Solution .. 210
6.4.8 Effects of Tungsten on Zinc Electrolysis in Alkaline Leaching Solution ... 212
6.4.9 Effects of Molybdenum on Zinc Electrolysis in Alkaline Leaching Solution ... 213

6.5 Effects of Zinc Powder Redissolution on Zinc Electrowinning Process .. 215
6.5.1 Effects of Stirring Speed on Zinc Powder Redissolution ... 215
6.5.2 Effects of Temperature on Zinc Powder Redissolution .. 216
6.5.3 Effects of Initial Concentration of Sodium Hydroxide on Zinc Powder Redissolution 217
6.5.4 Effects of Initial Concentration of Zinc on Zinc Powder Redissolution ... 218
6.5.5 Effects of Liquid-Solid Ratio on Zinc Powder Redissolution .. 218
6.5.6 Effects of Particle Size and Morphology of Zinc on Zinc Powder Redissolution 219
6.5.7 Effects of Contact Time on Zinc Powder Redissolution .. 219

6.6 Electrowinning of Lead from Alkaline Solutions ... 221
6.6.1 Cyclic Voltammetry of Lead Electrowinning Process ... 221
6.6.2 Catholic Reaction of Electrowinning of Lead in Sodium Hydroxide Solution .. 222
6.6.3 Anode Reaction of Electrowinning of Lead in Sodium Hydroxide Solution .. 226

6.7 Electrowinning Process of Lead in Alkaline Solution .. 230

6.8 Ions Impurities Effects on Lead Electrowinning Process in Alkaline Leaching ... 240
6.8.1 Theoretical Analysis of Impurity Effect on Electrowinning of Pb ... 240
6.8.2 Cyclic Voltammetry (CV) of Pb Electrowinning in the Presence of Zn ... 242
6.8.3 Effects of Temperature on Cyclic Voltammetry Curves of Pb Deposited on Cathode in Alkaline Solution in the Presence of Zn .. 244
6.8.4 Effects of Zn Concentration on Pb Electrowinning in Alkaline Solution ... 245
6.8.5 Effects of Electrolysis Time on Pb Electrowinning in Alkaline Solution in the Presence of Zn 246
6.8.6 Effects of Current Density on Pb Electrowinning in Alkaline Solution in the Presence of Zn 247
6.8.7 Effects of Temperature on Pb Electrowinning in Alkaline Solution in the Presence of Zn 247
6.8.8 Effects of Sn on Lead Electrowinning Process in Alkaline Solution ... 248
6.8.9 Effects of As on Lead Electrowinning Process in Alkaline Solution ... 252
6.8.10 Effects of Sb on Lead Electrowinning Process in Alkaline Solution ... 254
6.8.11 Effects of W on Lead Electrowinning Process in Alkaline Solution ... 256
6.8.12 Effects of Cu on the Pb Electrowinning Process in Alkaline Solution ... 257
6.8.13 Effects of Anions on Pb Electrowinning Process in Alkaline Solution ... 259

7 Alkaline Hydrometallurgy of Low-Grade Smithsonite Ores 263
7.1 Alkaline Hydrometallurgy of Low-Grade Smithsonite Ore Process ... 263
7.2 Effects of NaOH Concentration on the Extraction of Zinc from Low-Grade Smithsonite Ores 265
7.3 Effects of Liquid-Solid Ratio on the Extraction of Zinc from Low-Grade Smithsonite Ores 266
7.4 Effects of Leaching Time on the Extraction of Zinc and Lead from Low-Grade Smithsonite Ores 267
7.5 Effects of Additives on the Extraction of Zinc from Low-Grade Smithsonite Ores 267
7.6 Typical Contents in the Leach Solution and Leaching Residues for Low-Grade Smithsonite Ores 268
7.7 Electrolysis of Zinc from Lead-Free Leaching Solution for Low-Grade Smithsonite Ores and Economic-Technological Analysis ... 269
7.8 Treatment and/or Recycling of Wastewaters and Solid Wastes Generated from Low-Grade Ores and Dust Processing in Alkaline Solutions ... 272
7.9 Lead Precipitation from Leaching Solution for Low-Grade Smithsonite Ores 274
7.10 Zinc Precipitation from Pb-Depleted Zinc Alkaline Solution for Low-Grade Smithsonite Ores 276
7.11 Lead and Zinc Concentrate Production from Low-Grade Pb-Zn Oxidized Ore 278
7.11.1 Technological Process .. 278
7.11.2 Principle of Process .. 279
7.12 Scale-Up Experiments for Lead and Zinc Concentrate Production from Low-Grade Pb-Zn Oxidized Ore in Alkaline Solution .. 281

8 Spent Electrolyte Regeneration and Recovery of Associated Valuable Metals from Lean Leaching Solution 283
8.1 Regeneration of Alkaline Spent Electrolyte Causticized by CaO .. 284
8.2 Flotation of Molybdate Oxyanions in Dilute Solutions Using Dodecylamine and Ferric Hydroxide 287
8.3 Separation of Tungstates from Leaching Solution Using Ion Flotation .. 295
8.4 Removal of Molybdate and Arsenate from Aqueous Solutions by Flotation .. 305
8.5 Extraction of Phosphorus, Arsenic, and/or Silica from Sodium Tungstate and Molybdate Solutions with Primary Amine and Tributyl Phosphate as Solvents 313
8.5.1 Parameter Optimization for the Extraction of Phosphorus, Arsenic, and/or Silica from Sodium Tungstate and Molybdate Solutions with Primary Amine and Tributyl Phosphate as Solvents 317
8.5.2 Mechanism of Extraction of Phosphorus, Arsenic, and Silica from Tungstate and Molybdate Solutions ... 324
8.6 Combined Removal of SO$_2$, H$_2$S, and NO$_x$ from Gas Streams by Chemical Absorption with Aqueous Solution of 12-Molybdophosphoric Acid and Its Reduced Species 331
8.6.1 Solution Chemistry of Heteropoly Acids and Their Anions ... 331
8.6.2 Setup from Combined Removal of SO$_2$, H$_2$S, and NO$_x$ from Gas Streams by Chemical Absorption with Aqueous Solution of 12-Molybdophosphoric Acid and Its Reduced Species 333
8.6.3 Removal of SO$_2$, H$_2$S, and NO$_x$ from Gas Streams by Chemical Absorption with Aqueous Solution of 12-Molybdophosphoric Acid Solution 334
8.6.4 Absorption of NO$_2$ and NO in Molybdenum Blue Solution .. 341
8.6.5 Combined Removal of SO$_2$ and H$_2$S 344
8.6.6 Combined Removal of NO$_x$, SO$_2$, and H$_2$S 345
8.6.7 Regeneration of Scrubbing Solution 345
8.7 Recovery and Synthesis of Tungstotantalate and Tungstoniobate Using White Tungstic Acid 347
8.7.1 Synthesis of Tungstotantalate 348
8.7.2 Synthesis of [(C$_4$H$_9$)$_4$N]$_5$K$_2$TaW$_{11}$O$_{40}$H$_2$ 350
8.7.3 Synthesis of K$_9$[NbW$_{11}$O$_{40}$]-2H$_2$O 352
8.7.4 Synthesis of [(C₄H₉)₄N]₆K[NbW₁₁O₄₀H₂]
and [(C₄H₉)₄N]₅K₂[NbW₁₁O₄₀H₂] 354
8.7.5 Synthesis of [C(NH₂)₃]₆.₃K[Nb₁.₃W₁₀.₇O₄₀H₂]·H₂O . . 356
8.7.6 Quick Determination of Tungsten Based on White
Tungstic Acid: Gravimetric Method 358
8.7.7 Removal of P, As, and Si During White Tungstic
Acid Preparation 361
8.7.8 Practical Significance of White Tungstic Acid
in Tungsten Metallurgy Industry 363

9 Industrial-Scale Production of Zinc Powder Using Alkaline
Leaching-Electrowinning Processes 365
 9.1 Industrial Production of Zn Powder by Alkaline Process
 Using Brass Smelting Ash as an Example 365
 9.1.1 Industrial-Scale Leaching 367
 9.1.2 Industrial-Scale Purification 367
 9.1.3 Industrial-Scale Electrolysis 368
 9.1.4 Industrial-Scale Zn Powder Filtration, Washing,
 and Desiccation 368
 9.1.5 Industrial-Scale Sieving and Milling 369
 9.2 Overall Process for Production Zinc Powder Using Alkaline
 Leaching-Electrowinning Processes 370
 9.3 Design for Production Equipment for Production
 of 1500 t/a Zinc Powder Using Alkaline
 Leaching-Electrowinning Processes 372
 9.4 Industrial Design for Purging, Drying, and Crushing
 Working Section of Zinc Powder 378
 9.5 Industrial Operation Procedure in Leaching Process 381
 9.6 Industrial Operation Procedure in Purification 382
 9.7 Industrial Operation Procedure in Electrolysis 382
 9.8 Industrial Operation Procedure in Zinc Powder Filtration,
 Washing, and Desiccation 383
 9.9 Analytical Requirements 384
 9.10 “The Three-Waste” Emissions of Zinc Production Process
 by Alkaline Leaching-Electrolysis 386
 9.11 Production Operations for Alkaline Leaching-Electrolysis
 Process 387
 9.12 Life Cycle Assessment in the Process of Alkaline
 Hydrometallurgy for Zinc and Lead Hazardous Wastes 388

Bibliography .. 393

Index .. 401
Pollution Control and Resource Reuse for Alkaline Hydrometallurgy of Amphoteric Metal Hazardous Wastes
Zhao, Y.; Zhang, C.
2017, Li, 405 p. 339 illus., 150 illus. in color., Hardcover
ISBN: 978-3-319-55157-9