Contents

1 **Topological Groups** .. 1
1.1 Topological Groups: Examples 1
1.2 Homogeneous Spaces 6
1.3 Elementary Abelian Groups 10
1.4 Proper Group Actions 16
1.5 Discrete Groups with Compact Quotient:
 Arithmetic Examples 20
1.6 Applications to Algebraic Number Fields 26

2 **Simply Connected Spaces and Groups** 33
2.1 The Czechist Viewpoint 33
2.2 Extensions of Local Homomorphisms of a Simply Connected
 Group .. 38
2.3 Covering Spaces and the Fundamental Group 40
2.4 The Simply Connected Covering of a Space 43
2.5 Classification of Covering Spaces 45
2.6 The Simply Connected Covering of a Topological Group . 48
2.7 The Universal Covering of the Group \(SL_2(\mathbb{R}) \) 51

3 **Analytic Properties of Linear Groups** 61
3.1 Exponential and Logarithm 61
3.2 One-Parameter Subgroups of \(GL_n(\mathbb{R}) \) 69
3.3 Limits of Products and Commutators 70
3.4 Von Neumann’s Theorem for a Closed Subgroup 72
3.5 Extension of von Neumann’s Theorem to Locally
 Linear Groups 77
3.6 The Lie Algebra and the Adjoint Representation of a Locally
 Linear Group 85
3.7 The Analytic Structure on a Locally Linear Group 89
3.8 Analyticity of Continuous Homomorphisms 94
3.9 The Derivative of the Exponential Map 99
3.10 The Campbell–Hausdorff Formula 103
3.11 Examples of Lie Algebras .. 105
3.12 Cartan Decomposition in a Self-Adjoint Group 110

4 Manifolds and Lie Groups ... 113
4.1 Manifolds and Morphisms .. 113
4.2 The Rank of a Morphism at a Point 116
4.3 Immersions and Submersions 117
4.4 Gluing Open Submanifolds 120
4.5 Cartesian Products and Lie Groups 122
4.6 Definition of Manifolds by Means of Immersions 124
4.7 Submanifolds ... 127
4.8 Lie Subgroups .. 129
4.9 Submersions and Quotient Manifolds 132

5 The Lie Algebra of a Lie Group 141
5.1 Contacts of Order \(n \), Punctual Distributions 141
5.2 Tangent Vectors to a Manifold at a Point 146
5.3 Tangent Linear Map to a Morphism 150
5.4 Tangent Vectors to a Cartesian Product 153
5.5 Tangent Manifold ... 156
5.6 The Adjoint Representation of a Lie Group 159
5.7 The Lie Algebra of a Lie Group 164
5.8 Effect of a Homomorphism on a Lie Algebra 169
5.9 Differential Operators on Manifolds 174
5.10 Invariant Differential Operators on a Lie Group 177
5.11 Some Concrete Examples .. 187
5.12 Differential Operators with Complex Coefficients.
 The Case of \(SL_2(\mathbb{R}) \) ... 193
5.13 Representations of \(G \) and Representations of \(U(g) \) ... 201
5.14 Invariant Subspaces. Schur’s Lemma
 and Burnside’s Theorem ... 205
5.15 Invariant Central Distributions of the Co-adjoint
 Representation ... 212
5.16 The Universal Property of \(U(g) \) 224

6 The Exponential Map for Lie Groups 229
6.1 One-Parameter Subgroups .. 229
6.2 Elementary Properties of the Exponential Map 231
6.3 Regularity of the Exponential Map 233
6.4 The Derivative of the Exponential Map 237
6.5 The Campbell–Hausdorff Formula (Integral Form) 239
6.6 The Campbell–Hausdorff Formula (Series Expansion
 of Homogeneous Polynomials) 241
6.7 The Campbell–Hausdorff Formula. (Analyticity of the Function H) .. 247
6.8 Analyticity of Lie Groups 250
6.9 Limits of Products and Commutators 253
6.10 Analyticity of Continuous Homomorphisms 255
6.11 Simply Connected Group Homomorphisms 257
6.12 The Cartan–von Neumann Theorem 260
6.13 Subgroups and Lie Subalgebras 267
6.14 The Natural Analytic Structure of a Subgroup 272
6.15 Commutators in a Lie Group 276
6.16 Belated Regrets About Quotient Groups 281

Index ... 285
Introduction to the Theory of Lie Groups
Godement, R.
2017, IX, 293 p., Softcover
ISBN: 978-3-319-54373-4