Contents

1 Introduction ............................................ 1
   Arno Behr and Andreas J. Vorholt
   1.1 Advantages of Homogeneous Catalysis in Derivatisation of Renewables ...................................... 1
   1.2 Introduction into the Chemistry of Renewables ............. 3
   1.3 Introduction into the Main Groups of Renewables ........... 5
       1.3.1 Oleochemicals ................................ 5
       1.3.2 Terpenes .................................... 7
       1.3.3 Carbohydrates ................................ 10
       1.3.4 Lignin ...................................... 13
       1.3.5 Peptides .................................... 14
       1.3.6 Carbon Dioxide .............................. 15
   References .............................................. 17

2 Hydrogenation of Renewables .............................. 21
   Andreas J. Vorholt and Arno Behr
   2.1 Introduction ........................................ 21
   2.2 Hydrogenations of Carbon Dioxide ...................... 22
       2.2.1 Interconversion of CO₂/Formic Acid as Hydrogen Storage ..................................... 27
       2.2.2 Methanol .................................... 28
   2.3 Lignin ............................................ 30
   2.4 Sugars ............................................ 34
   2.5 Fats .............................................. 35
   2.6 Conclusions ........................................ 37
   References .............................................. 37

3 Hydroformylation of Renewables ........................... 41
   Tom Gaide, Arno Behr and Andreas J. Vorholt
   3.1 Introduction ........................................ 41
       3.1.1 Mechanisms .................................... 41
   References .............................................. 41
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.2 Side Reactions</td>
<td>43</td>
</tr>
<tr>
<td>3.1.3 Catalyst Development in Industrial Hydroformylation Processes</td>
<td>45</td>
</tr>
<tr>
<td>3.2 Oleocompounds in Hydroformylation</td>
<td>46</td>
</tr>
<tr>
<td>3.2.1 Catalyst Development</td>
<td>46</td>
</tr>
<tr>
<td>3.2.2 Catalyst Recycling</td>
<td>49</td>
</tr>
<tr>
<td>3.2.3 Applications</td>
<td>53</td>
</tr>
<tr>
<td>3.3 Terpenes and Naturally Occurring Allylbenzenes</td>
<td>55</td>
</tr>
<tr>
<td>3.3.1 Catalyst Development</td>
<td>55</td>
</tr>
<tr>
<td>3.3.2 Catalyst Recycling</td>
<td>60</td>
</tr>
<tr>
<td>3.4 Conclusions</td>
<td>62</td>
</tr>
<tr>
<td>References</td>
<td>62</td>
</tr>
</tbody>
</table>

### 4 Amination of Renewables

S. Fuchs, H. Warmeling, Arno Behr and Andreas J. Vorholt

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1 Introduction</td>
<td>65</td>
</tr>
<tr>
<td>4.2 Carbohydrates</td>
<td>68</td>
</tr>
<tr>
<td>4.2.1 5-Hydroxymethylfurfural (HMF)</td>
<td>69</td>
</tr>
<tr>
<td>4.2.2 Levulinic Acid</td>
<td>69</td>
</tr>
<tr>
<td>4.2.3 Oils and Fats—Fatty Acid Esters</td>
<td>72</td>
</tr>
<tr>
<td>4.2.4 Terpenes</td>
<td>75</td>
</tr>
<tr>
<td>4.2.5 Myrcene</td>
<td>75</td>
</tr>
<tr>
<td>4.2.6 Citronellal</td>
<td>76</td>
</tr>
<tr>
<td>4.3 Conclusion</td>
<td>78</td>
</tr>
<tr>
<td>References</td>
<td>78</td>
</tr>
</tbody>
</table>

### 5 Telomerisation of Renewables

T.A. Faßbach, Arno Behr and Andreas J. Vorholt

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Introduction</td>
<td>81</td>
</tr>
<tr>
<td>5.2 Telomerisation Using Renewable Dienes</td>
<td>83</td>
</tr>
<tr>
<td>5.3 Telomerisation Using Renewable Nucleophiles</td>
<td>84</td>
</tr>
<tr>
<td>5.3.1 Lignin-Derived Phenols</td>
<td>84</td>
</tr>
<tr>
<td>5.3.2 Renewable Polyols</td>
<td>85</td>
</tr>
<tr>
<td>5.3.3 Telomerisation with CO₂</td>
<td>88</td>
</tr>
<tr>
<td>5.4 Conclusion</td>
<td>89</td>
</tr>
<tr>
<td>References</td>
<td>89</td>
</tr>
</tbody>
</table>

### 6 Oxidation of Renewables

Sabrina Baader and Melanie Kim Müller

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>93</td>
</tr>
<tr>
<td>6.2 Fatty Acids and Fatty Acid Derivatives</td>
<td>95</td>
</tr>
<tr>
<td>6.3 Terpenes and Terpene Alcohols</td>
<td>100</td>
</tr>
<tr>
<td>6.4 Lignin and Phenylpropanoids</td>
<td>102</td>
</tr>
<tr>
<td>6.5 Conclusions</td>
<td>103</td>
</tr>
<tr>
<td>References</td>
<td>104</td>
</tr>
</tbody>
</table>
7 Tandem Reactions with Renewables ........................................ 107
T. Seidensticker, K.A. Ostrowski and Andreas J. Vorholt
7.1 Introduction .................................................... 107
7.2 Tandem Reactions with Metathesis ................................ 110
  7.2.1 Cross-Metathesis ......................................... 110
  7.2.2 Intramolecular Ring-Closing Metathesis .................. 112
7.3 Tandem Reactions with Hydroformylations ...................... 112
  7.3.1 Hydroformylation/Hydrogenation ....................... 113
  7.3.2 Hydroformylation and C–O Bond Formation ............ 114
  7.3.3 Hydroformylation and C–C Bond Formation ............ 118
  7.3.4 Hydroaminomethylation for C–N Bond Formation ...... 121
  7.3.5 Alternative Syngas Resources for Hydroformylation ... 126
7.4 Defunctionalisation—Overcoming Over-Functionalisation .... 131
  7.4.1 Decarbonylative Dehydration ........................... 131
  7.4.2 Glycerol Degradation .................................... 135
7.5 Isomerising Tandem Catalyses .................................. 136
  7.5.1 Isomerising Metathesis ................................... 137
  7.5.2 Isomerising Hydroformylation ......................... 139
  7.5.3 Isomerising Hydroboration .............................. 141
  7.5.4 Isomerising Trialkysilylation ......................... 143
  7.5.5 Isomerising Lactonisation .............................. 143
  7.5.6 Isomerising Michael-Reactions ....................... 144
  7.5.7 Isomerising Decarboxylation ......................... 145
  7.5.8 Isomerising Transfer Hydrogenation ................... 146
  7.5.9 Isomerising Alkoxy carbonylations .................... 146
References ..................................................... 150

8 Continuously Operated Telomerisations with Renewables in Miniplants ........................................ 155
Arno Behr and Andreas J. Vorholt
8.1 Telomerisation of Butadiene with Carbon Dioxide ............ 156
8.2 Telomerisation of Butadiene with Glycerol ................... 159
8.3 Telomerisation of Butadiene with Sucrose ................... 160
References ..................................................... 161

9 Continuously Operated Cooligomerisation of Fatty Compounds with Ethylene ......................................... 163
J. Hasselberg, Arno Behr and Andreas J. Vorholt
9.1 Introduction .................................................... 163
  9.1.1 Cooligomerisation of Fatty Compounds with Ethylene 164
9.2 Batch Investigations .......................................... 164
  9.2.1 Conjugation and Cooligomerisation in Laboratory Scale 164
  9.2.2 Catalyst Recycling ................................. 166
9.2.3 Catalyst Leaching ........................................ 167
9.2.4 Application of Ligands ................................... 167
9.3 Miniplant Investigations .................................... 169
  9.3.1 Miniplant Concept for Continuous Operation ......... 169
  9.3.2 Miniplant Equipment ................................... 170
  9.3.3 Miniplant Operation in Continuous Manner .......... 172
  9.3.4 Hydrogenation ......................................... 173
  9.3.5 Optimised Miniplant Concept ........................ 173

References .................................................. 176

10 Hydroamination and Telomerisation of \( \beta \)-Myrcene .......... 177
  T. Färber, Arno Behr and Andreas J. Vorholt
  10.1 Introduction ............................................. 177
  10.2 Laboratory Experiments .................................. 179
    10.2.1 Control of Reaction Pathways ..................... 179
    10.2.2 Catalyst Recycling .................................. 181
  10.3 Miniplant Investigations ................................ 182
    10.3.1 Choice of Reactor .................................. 182
    10.3.2 The Taylor-Couette Reactor ...................... 182
    10.3.3 Design Aspects and Construction ................. 184
    10.3.4 Batch Experiments .................................. 185
    10.3.5 Miniplant Concept ................................... 186
    10.3.6 Continuous Experiments ........................... 187
  10.4 Conclusion and Outlook ................................ 188

References .................................................. 189

11 Continuously Operated Hydroformylation .................. 191
  J. Dreimann, Arno Behr and Andreas J. Vorholt
  11.1 Introduction ............................................. 191
  11.2 Batch Investigations: Catalyst Screening and Catalyst Recycling ........................................ 192
  11.3 Miniplant Process ....................................... 195
    11.3.1 Hydroformylation of Renewables in a Continuous Process ........................................ 200
  11.4 Conclusions .............................................. 202

References .................................................. 203

12 Future Developments in Homogenous Catalysis with Renewables .......... 205
  Arno Behr and Andreas J. Vorholt

Index ........................................................ 207
Homogeneous Catalysis with Renewables
Behr, A.; Vorholt, A.J.
2017, VIII, 215 p. 205 illus., 16 illus. in color., Hardcover
ISBN: 978-3-319-54159-4