Cell death is a fundamental biological phenomenon. It is evolutionarily conserved but can assume different forms under different conditions. While apoptosis, necrosis, and necroptosis are perhaps best studied, less known forms of cell death such as pyroptosis, ferroptosis, parthanatos, and entosis are increasingly found in various conditions or organisms. In multicellular organisms, cell death is important for development, shaping organ size, reforming tissue architecture, promoting functional differentiation, and determining mitochondrial inheritance. In the post-development stage, cell death determines the severity in tissue injury and the degree of subsequent response in inflammation, fibrosis, repair, regeneration, and tumorigenesis. The pathological changes in a complex organ, such as the liver, can be greatly affected by the death program in its cellular components.

As the major organ for metabolism and detoxification, the liver is constantly under challenges from both internal and external sources. Viral infection and xenobiotics are the two major environmental stimuli that can cause significant hepatocyte death. Metabolic disturbance (such as in autophagy function) and special food components (such as lipids, ethanol, cholesterol, sugars) are the major internal stress that can also take a significant token on the hepatocytes that leads to cell death. Furthermore, the liver may experience traumatic injury as in cholestasis or ischemia, which often leads to tissue injury to various degrees. The liver is composed of hepatocytes (the majority), cholangiocytes, stellate cells, fibroblasts, macrophages/Kupffer cells, sinusoidal cells, and many more. They respond to these insults with different sensitivities and contribute to the overall liver pathology in various ways. Thus different signaling pathways may be involved in a cell type-specific and/or in a stimulus-specific way, which triggers subcellular organelle (mitochondria and endoplasmic reticulum as well as lysosomes) stress to induce cell death. Significant progresses have been made in the past decades to characterize these cell death pathways and the cells that are involved in liver injury.

We are thus preparing two books devoted to the mechanisms of cell death in the liver and liver diseases. While the first volume mainly discusses liver injury and cell death caused by the various external and internal stimuli, the second volume discusses in great detail the type of cells and intracellular organelles involved in cell
death as well as several major signaling pathways involved. We have paid particular
attention to the interaction of different cells and aimed to provide a global view of
the liver pathology that connects injury/cell death to other pathological changes,
such as inflammation, fibrosis, and tumor development. Notably we also discuss the
interaction between the liver and the intestine where microbiota can both influence
and be influenced by the liver pathology. Authors who are invited to contribute to
the two volumes are respected experts in the subject, which should greatly enhance
the authority of the chapter and the book. The volume editors are thus indebted to
the authors for their outstanding contributions that make these two books so infor-
mative and thought-provoking.

Kansas City, KS, USA Wen-Xing Ding
Indianapolis, IN, USA Xiao-Ming Yin
Cellular Injury in Liver Diseases
Ding, W.-X.; Yin, X.-M. (Eds.)
2017, XIII, 263 p. 26 illus., 22 illus. in color., Hardcover
ISBN: 978-3-319-53773-3