Contents

1 The Properties of Refractory and Heat Insulation Materials .......... 1
  1.1 Classifications and Some Words About Quality Control .......... 1
  1.2 Density, Porosity, and Related Characteristics;
      Types of Porosity ........................................ 6
  1.3 Mechanical Characteristics .................................. 13
      1.3.1 Compressive and Bending Strength ..................... 13
      1.3.2 Elasticity Modulus, Hardness, and Weibull Modulus .... 18
      1.3.3 Elements of Fracture Mechanics ..................... 23
  1.4 Thermomechanical Properties .................................. 26
      1.4.1 Refractoriness ......................................... 26
      1.4.2 Hot Modulus of Rupture ............................... 30
      1.4.3 Reheat Change: Permanent Linear Change
          on Reheating ........................................... 30
      1.4.4 High-Temperature Deformation: Characteristic
          Points and Softening Point ............................ 32
      1.4.5 Creep .................................................. 34
  1.5 Thermal Conductivity, Heat Capacity, and Temperature
      Conductivity (Heat Diffusivity) ................................ 35
      1.5.1 Elements of Theory ..................................... 37
      1.5.2 Measurement of Thermal Conductivity .................... 44
      1.5.3 Methods of Thermal Conductivity Measurements
          Based on Principle of Stationary Heat Flow .............. 45
      1.5.4 Methods of Thermal Conductivity Measurements
          Based on Principle of Nonstationary Heat Flow
          (Dynamic Methods) ....................................... 46
  1.6 Thermal Coefficient of Linear Expansion, Thermal Strains,
      and Thermal Shock Resistance ................................ 47
      1.6.1 Thermal Coefficient of Linear Expansion ............... 47
      1.6.2 Thermal Expansion of Refractory and Heat Insulation
          Materials: Elements of Theory .......................... 48
1.6.3 Measurement of Linear Coefficients of Thermal Expansion .................. 51
1.6.4 Thermal Strains ........................................ 52
1.6.5 Thermal Shock ......................................... 54
1.6.6 Thermal Shock Factors .................................. 56
1.6.7 Thermal Shock Resistance Measurements ...................... 57
1.7 Corrosion Resistance ......................................... 58
  1.7.1 Elements of Theory .................................... 60
  1.7.2 Tests .................................................. 66
References .......................................................... 68

2 Refractories and Carbon Cathode Materials for Aluminum Reduction Cells ........................................ 75
  2.1 Aspects of Aluminum Reduction .................................. 75
  2.2 Lining of Reduction Cells; Preheating, Startup, and Operation; Retrofit of Cells and Trends; Main Causes of Failures; Dry Autopsies ........................................ 85
    2.2.1 Brief Discussion on Reduction Cell Linings .............. 85
    2.2.2 Preheating and Startup of Reduction Cells .......... 91
    2.2.3 Service Life and the Main Causes for Shutdowns ........ 94
    2.2.4 Dry Autopsies ........................................ 97
  2.3 Carbon Cathode Bottom Blocks .................................. 100
    2.3.1 Types and Properties ................................ 100
    2.3.2 Elements of Technology, Raw Materials, and Processing ........................................ 102
    2.3.3 Defects in Carbon Cathode Blocks ...................... 120
    2.3.4 Testing and Characterization .......................... 126
    2.3.5 Grades of Carbon Cathode Blocks ...................... 131
    2.3.6 Structure of Carbon Cathode Blocks in Connection with Grain Size Composition, Sintering, and Pore Size Structure ........................................ 133
    2.3.7 Interaction of Carbon Cathode Blocks with Steel Shell and Collector Bars .............. 135
    2.3.8 Interaction of Carbon Cathode Blocks with Electrolyte During Startup and in Service: Wear, Infiltration .......... 139
    2.3.9 Carbon Ramming Paste ................................ 149
  2.4 Coatings of Carbon Cathode Blocks and New Cathode Materials ........................................ 159
  2.5 Side Lining Materials ......................................... 166
    2.5.1 Carbon Side Linings and the Causes of Their Decay .... 167
    2.5.2 SiC Side Lining ...................................... 170
    2.5.3 Variants of SiC Materials (and Others) as a Side Lining ........................................ 172
    2.5.4 SiC Mortars, Ramming Mixes, and Castables for Installation of SiC Side Lining .............. 193
2.6.1 Bricks and Dry Barrier Mixtures ........................ 197
2.7 Heat Refractory Insulation Materials for Reduction Cell Linings ......................................................... 209
2.7.1 Diatomaceous (Moler) Heat Insulation Materials ....... 210
2.7.2 Perlite-Based Heat Insulation Materials .................. 211
2.7.3 Vermiculite-Based Heat Insulation Materials .......... 211
2.7.4 Calcium Silicate Heat Insulation Materials .............. 213
2.7.5 Thermal Aging of Heat Insulation Materials at Service and Thermal Conductivity of Infiltrated Heat Insulation Materials ............................................. 216

References ................................. 219

3 Refractories and Heat Insulation Materials for Cast Houses ..... 229
3.1 Cast House ........................................ 229
3.2 Physical and Chemical Interaction of Refractories with Aluminum and Aluminum Alloys ................... 231
3.2.1 Chemical Interaction of Aluminum and Aluminum-Based Alloys with Components of Refractories ............... 231
3.2.2 Antiwetting Admixtures to Alumina Silica Refractories ................................................................. 235
3.2.3 Wetting of Alumina Silica Refractories by Molten Aluminum and Aluminum Alloys .................. 237
3.2.4 Some Words on Corrosion Mechanism .................. 238
3.2.5 Tests for Corrosion Resistance ............................ 242
3.3 Refractory Materials .................................. 243
3.4 Elements of Lining Design ................................ 249
3.4.1 Some Words on Drying and Preheating of Furnaces 250
3.5 Melting and Holding Furnaces ............................ 254
3.6 Induction Furnaces, Ladles ................................ 257
3.6.1 Ladles ............................................ 259
3.7 Launders (Runners), Casting Equipment: Elimination of Asbestos-Containing Materials .................. 259
3.7.1 Casting Equipment (Tooling) ............................ 261
3.7.2 Ceramic Foam Filters ................................. 263
3.8 Considerations on Future Trends: Physical Chemistry of Technical Engineering Improvements? ............... 263

References ........................................ 264
4 Refractories for Anode Baking Furnaces............................ 267
  4.1 Lining..................................................................... 267
References..................................................................... 271

Glossary........................................................................ 273
Refractories for Aluminum
Electrolysis and the Cast House
Yurkov, A.
2017, XIV, 278 p. 183 illus., 78 illus. in color., Hardcover
ISBN: 978-3-319-53588-3