Contents

1 The Properties of Refractory and Heat Insulation Materials 1
 1.1 Classifications and Some Words About Quality Control 1
 1.2 Density, Porosity, and Related Characteristics;
 Types of Porosity .. 6
 1.3 Mechanical Characteristics 13
 1.3.1 Compressive and Bending Strength 13
 1.3.2 Elasticity Modulus, Hardness, and Weibull Modulus 18
 1.3.3 Elements of Fracture Mechanics 23
 1.4 Thermomechanical Properties 26
 1.4.1 Refractoriness 26
 1.4.2 Hot Modulus of Rupture 30
 1.4.3 Reheat Change: Permanent Linear Change
 on Reheating ... 30
 1.4.4 High-Temperature Deformation: Characteristic
 Points and Softening Point 32
 1.4.5 Creep .. 34
 1.5 Thermal Conductivity, Heat Capacity, and Temperature
 Conductivity (Heat Diffusivity) 35
 1.5.1 Elements of Theory 37
 1.5.2 Measurement of Thermal Conductivity 44
 1.5.3 Methods of Thermal Conductivity Measurements
 Based on Principle of Stationary Heat Flow 45
 1.5.4 Methods of Thermal Conductivity Measurements
 Based on Principle of Nonstationary Heat Flow
 (Dynamic Methods) 46
 1.6 Thermal Coefficient of Linear Expansion, Thermal Strains,
 and Thermal Shock Resistance 47
 1.6.1 Thermal Coefficient of Linear Expansion 47
 1.6.2 Thermal Expansion of Refractory and Heat Insulation
 Materials: Elements of Theory 48
1.6.3 Measurement of Linear Coefficients of Thermal Expansion 51
1.6.4 Thermal Strains 52
1.6.5 Thermal Shock .. 54
1.6.6 Thermal Shock Factors 56
1.6.7 Thermal Shock Resistance Measurements 57
1.7 Corrosion Resistance 58
 1.7.1 Elements of Theory 60
 1.7.2 Tests .. 66
References .. 68

2 Refractories and Carbon Cathode Materials for Aluminum Reduction Cells .. 75
 2.1 Aspects of Aluminum Reduction 75
 2.2 Lining of Reduction Cells; Preheating, Startup, and Operation; Retrofit of Cells and Trends; Main Causes of Failures; Dry Autopsies .. 85
 2.2.1 Brief Discussion on Reduction Cell Linings.............. 85
 2.2.2 Preheating and Startup of Reduction Cells 91
 2.2.3 Service Life and the Main Causes for Shutdowns 94
 2.2.4 Dry Autopsies 97
 2.3 Carbon Cathode Bottom Blocks 100
 2.3.1 Types and Properties 100
 2.3.2 Elements of Technology, Raw Materials, and Processing .. 102
 2.3.3 Defects in Carbon Cathode Blocks 120
 2.3.4 Testing and Characterization 126
 2.3.5 Grades of Carbon Cathode Blocks 131
 2.3.6 Structure of Carbon Cathode Blocks in Connection with Grain Size Composition, Sintering, and Pore Size Structure .. 133
 2.3.7 Interaction of Carbon Cathode Blocks with Steel Shell and Collector Bars 135
 2.3.8 Interaction of Carbon Cathode Blocks with Electrolyte During Startup and in Service: Wear, Infiltration 139
 2.3.9 Carbon Ramming Paste 149
 2.4 Coatings of Carbon Cathode Blocks and New Cathode Materials .. 159
 2.5 Side Lining Materials 166
 2.5.1 Carbon Side Linings and the Causes of Their Decay 167
 2.5.2 SiC Side Lining 170
 2.5.3 Variants of SiC Materials (and Others)
 as a Side Lining ... 172
 2.5.4 SiC Mortars, Ramming Mixes, and Castables
 for Installation of SiC Side Lining 193

2.6.1 Bricks and Dry Barrier Mixtures 197

2.7 Heat Refractory Insulation Materials for Reduction Cell Linings 209

2.7.1 Diatomaceous (Moler) Heat Insulation Materials 210

2.7.2 Perlite-Based Heat Insulation Materials 211

2.7.3 Vermiculite-Based Heat Insulation Materials 211

2.7.4 Calcium Silicate Heat Insulation Materials 213

2.7.5 Thermal Aging of Heat Insulation Materials at Service and Thermal Conductivity of Infiltrated Heat Insulation Materials 216

References 219

3 Refractories and Heat Insulation Materials for Cast Houses 229

3.1 Cast House 229

3.2 Physical and Chemical Interaction of Refractories with Aluminum and Aluminum Alloys 231

3.2.1 Chemical Interaction of Aluminum and Aluminum-Based Alloys with Components of Refractories 231

3.2.2 Antiwetting Admixtures to Alumina Silica Refractories 235

3.2.3 Wetting of Alumina Silica Refractories by Molten Aluminum and Aluminum Alloys 237

3.2.4 Some Words on Corrosion Mechanism 238

3.2.5 Tests for Corrosion Resistance 242

3.3 Refractory Materials 243

3.4 Elements of Lining Design 249

3.4.1 Some Words on Drying and Preheating of Furnaces 250

3.5 Melting and Holding Furnaces 254

3.6 Induction Furnaces, Ladles 257

3.6.1 Ladles 259

3.7 Launder (Runners), Casting Equipment: Elimination of Asbestos-Containing Materials 259

3.7.1 Casting Equipment (Tooling) 261

3.7.2 Ceramic Foam Filters 263

3.8 Considerations on Future Trends: Physical Chemistry of Technical Engineering Improvements? 263

References 264
4 Refractories for Anode Baking Furnaces

4.1 Lining

References

Glossary
Refractories for Aluminum Electrolysis and the Cast House
Yurkov, A.
2017, XIV, 278 p. 183 illus., 78 illus. in color., Hardcover
ISBN: 978-3-319-53588-3