1 Basic Statistical Concepts 1
 1.1 Tables, Distributions and Histograms 1
 1.2 Probability Density 14
 1.3 Mean Value ... 15
 1.4 Measures of Dispersion 18
 1.4.1 Range ... 18
 1.4.2 Deviation from the Mean and Mean
 Absolute Deviation from the Mean 19
 1.4.3 Standard Deviation 20

2 Measurement Errors 39
 2.1 Errors of Measurements 39
 2.1.1 Accidental or Random Errors 39
 2.1.2 Systematic Errors 40
 2.1.3 Personal Errors 42
 2.1.4 Occasional Errors 42
 2.1.5 The Errors in Reading the Indications
 of Instruments 43
 2.2 Errors in Compound Quantities 45
 2.2.1 Error in a Sum or a Difference 46
 2.2.2 Error in a Product 48
 2.2.3 Error in a Power 48
 2.2.4 Error in a Quotient 49
 2.2.5 The Use of Differentials 50

3 A Thought Experiment 57
 3.1 The Thought Experiment 57
 Reference ... 75

4 The Statistical Analysis of Experimental Results 77
 4.1 The Mean and the Dispersion of the Results
 of Measurements 77
4.2 The Standard Deviations

4.2.1 The Standard Deviation of the Measurements

4.2.2 The Standard Deviation of the Mean

4.2.3 The Relationship Between σ and $\sigma_{\bar{x}}$

4.2.4 The Relationship Between s_x and σ and $\sigma_{\bar{x}}$

4.3 The Standard Deviation of the Standard Deviation of the Mean

4.4 Information Derived from the Measurement of \bar{x} and s_x

4.4.1 The Mean Value of the Results of the Measurements and Its Standard Deviation

4.4.2 The Statistical Distribution of the Results of the Measurements

4.4.3 Statistical Estimates for the Mean

4.4.4 Summary of the Method of Analysis of the Results

References

5 The Presentation of Numerical Results

5.1 Significant Figures and Rounding of Numbers

5.2 The Presentation of a Numerical Result of a Series of Measurements

5.3 The Number of Significant Figures Used in the Presentation of Numerical Results

5.4 The International System of Units (S.I.) and the Rules of Its Use

5.5 Recommendations on the Notation Used for Mathematical Constants, Algebraic Parameters, Variables, Indices, Mathematical Functions, Operators, Physical Units, Elementary Particles and Isotopes

Reference

6 The Propagation of Errors

6.1 The Combination of Two Series of Measurements of the Same Physical Magnitude

6.1.1 The Mean \bar{x} of All the Measurements

6.1.2 The Standard Deviation s_x of All the Measurements

6.1.3 The Standard Deviation of the Mean $\sigma_{\bar{x}}$ of All the Measurements

6.2 The Mean and the Standard Deviation of a Function of Measured Quantities

6.2.1 The Mean and the Standard Deviations of a Function of One Variable

6.2.2 The Mean and the Standard Deviation of an Algebraic Sum
6.2.3 The Mean and the Standard Deviations of a General Function of Many Variables 149
6.2.4 Another Approach to the Evaluation of the Mean and the Standard Deviation of a Compound Quantity ... 155
6.3 The Error in $Q(\bar{x}, \bar{y}, \bar{z}, \ldots)$ Due to the Errors in $\bar{x}, \bar{y}, \bar{z}, \ldots$ 157
6.3.1 The Case of Asymmetrical Errors .. 158

7 The Three Basic Probability Distributions ... 163
7.1 Histograms of Experimental Probabilities 163
7.2 The Binomial or Bernoulli Distribution .. 166
 7.2.1 The Normalization of the Binomial Distribution 178
 7.2.2 The Mean Value of x for the Binomial Distribution 178
 7.2.3 The Standard Deviation of x from the Mean for a Binomial Distribution 179
7.3 The Poisson Distribution .. 180
 7.3.1 The Normalization of the Poisson Distribution 188
 7.3.2 The Mean Value of x for the Poisson Distribution 188
 7.3.3 The Standard Deviation from the Mean of x for the Poisson Distribution 188
7.4 The Normal or Gaussian Distribution .. 192
 7.4.1 The Normalization of the Gaussian Distribution 200
 7.4.2 The Mean Value of x for the Gaussian Distribution 200
 7.4.3 The Standard Deviation of x from the Mean for the Gaussian Distribution 200
 7.4.4 Testing Whether a Set of Data Has a Gaussian Distribution 201
 7.4.5 The Gaussian Distribution and the Phenomenon of Diffusion 209

References ... 214

8 The Statistics of Radioactivity .. 215
8.1 The Behavior of Large Samples. The Law of Radioactivity 215
8.2 Nuclear Disintegrations and the Binomial Distribution 218
8.3 Radioactivity and the Poisson Distribution 231
8.4 The Counting Rate of Nuclear Disintegrations and Its Error 234

References ... 238

9 Elements from the Theory of Errors ... 239
9.1 The Normal or Gaussian Law of Errors 239
9.2 The Lyapunov Central Limit Theorem ... 244
9.3 The Best Estimate that May Be Made for the Real Value of a Magnitude, Based on the Results of N Measurements of It .. 253
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.4</td>
<td>The Weighting of Values</td>
<td>255</td>
</tr>
<tr>
<td>9.5</td>
<td>The Joint Probability Density for Two Random Variables</td>
<td>272</td>
</tr>
<tr>
<td>9.6</td>
<td>The Probability Density of the Sum of Two Random Variables</td>
<td>277</td>
</tr>
<tr>
<td>9.6.1</td>
<td>The Probability Density of the Sum of Two Normally Distributed Random Variables</td>
<td>280</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>289</td>
</tr>
<tr>
<td>10</td>
<td>Comparison and Rejection of Measurements</td>
<td>291</td>
</tr>
<tr>
<td>10.1</td>
<td>The Problem of the Rejection of Measurements</td>
<td>291</td>
</tr>
<tr>
<td>10.2</td>
<td>Chauvenet’s Criterion</td>
<td>293</td>
</tr>
<tr>
<td>10.3</td>
<td>Comments Concerning the Rejection of Measurements</td>
<td>296</td>
</tr>
<tr>
<td>10.4</td>
<td>Comparison of the Means of Two Series of Measurements of the Same Quantity</td>
<td>298</td>
</tr>
<tr>
<td>11</td>
<td>The Method of Least Squares</td>
<td>301</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>301</td>
</tr>
<tr>
<td>11.2</td>
<td>The Theoretical Foundation of the Method of Least Squares</td>
<td>302</td>
</tr>
<tr>
<td>11.3</td>
<td>The Fitting of Curves to Experimental Points</td>
<td>305</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Straight Line</td>
<td>305</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Polynomial</td>
<td>327</td>
</tr>
<tr>
<td>11.3.3</td>
<td>Other Curves</td>
<td>340</td>
</tr>
<tr>
<td>11.3.4</td>
<td>The Reduction of Non-linear Relations to Linear</td>
<td>342</td>
</tr>
<tr>
<td>11.4</td>
<td>The Choice of the Optimum Function Fitted to a Set of Experimental Results</td>
<td>346</td>
</tr>
<tr>
<td>11.5</td>
<td>The Fractional Absolute Deviation of the Experimental Values from the Values of the Curve</td>
<td>346</td>
</tr>
<tr>
<td>11.6</td>
<td>Smoothing</td>
<td>348</td>
</tr>
<tr>
<td>11.7</td>
<td>The Error in a Value Read off a Smoothed Curve</td>
<td>354</td>
</tr>
<tr>
<td>11.8</td>
<td>The Regression Line and the Coefficient of Correlation</td>
<td>357</td>
</tr>
<tr>
<td>11.9</td>
<td>The Use of the Method of Least Squares in the Solution of a System of Overdetermined Linear Equations</td>
<td>362</td>
</tr>
<tr>
<td>11.9.1</td>
<td>Equations in Two Variables</td>
<td>363</td>
</tr>
<tr>
<td>11.9.2</td>
<td>Equations in Three Variables</td>
<td>368</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>375</td>
</tr>
<tr>
<td>12</td>
<td>Graphs</td>
<td>377</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>377</td>
</tr>
<tr>
<td>12.2</td>
<td>The Axes</td>
<td>378</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Linear Scales</td>
<td>378</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Logarithmic Scales</td>
<td>380</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Polar Diagrams</td>
<td>384</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Other Matters Relating to the Axes and the Scales of Graphs</td>
<td>387</td>
</tr>
<tr>
<td>12.2.5</td>
<td>Legends of the Figure, Labels of the Axes and the Units of Physical Magnitudes.</td>
<td>391</td>
</tr>
</tbody>
</table>
12.3 The Points ... 392
12.4 The Curve ... 394
12.5 The Slope of the Curve 420
 12.5.1 A Graphical Method of Evaluating the Errors δx and $\delta \lambda$ in the Parameters x and λ of the Straight Line $y = x + \lambda x$ 422
 12.5.2 The Evaluation of Slopes of Straight Lines in Graphs with Logarithmic Scales 431
Reference .. 447

13 The Written Report of the Results of an Experiment 449
 13.1 Introduction .. 449
 13.2 The Preparation of the Writing of the Report While Performing the Experiment 450
 13.3 The Written Report of an Experiment 452
 13.4 An Example of a Written Report of an Experiment 454
References .. 471

14 Appendices .. 473
 14.1 Appendix 1: Least Squares Straight Line $y = x + \lambda x$.
 The Errors in x and λ 473
 14.2 Appendix 2: Dimensional Analysis 483
 14.2.1 The Dimensions of Physical Quantities 483
 14.2.2 The Dimensional Homogeneity of Equations 485
 14.2.3 The Derivation of Relations Between Physical Quantities Using Dimensional Analysis 486
 14.3 Appendix 3: The Use of Random Numbers in Finding
 Values x of a Variable x Which Are Distributed According to a Given Probability Density Function $f(x)$ 493
 14.3.1 The Use of Random Numbers in Finding Values x
 of a Variable x Which Are Distributed According
 to a Given Probability Density Function $f(x)$ 494
 14.4 Appendix 4: The Values of the Fundamental Physical
 Constants ... 502
References .. 505

Answers to the Problems 507

List of Programs and Code Samples 515

Index .. 521
Analysis and Presentation of Experimental Results
With Examples, Problems and Programs
Christodoulides, C.; Christodoulides, G.
2017, XIV, 526 p. 119 illus., Softcover
ISBN: 978-3-319-53344-5