Contents

Part I Mathematical Model of Network System

1. **Introduction** ... 3
 1.1 Network System ... 3
 1.2 Modeling Network System 4
 1.3 Solving Network System 5
 1.4 Network Laws ... 6

2. **Basic Notions** ... 9
 2.1 Network Graph Notions 9
 2.2 Electrical Network Notions 9

3. **Algebraic Model of Network Graph** 13
 3.1 Cut-Set and Loop-Set Vectors 13
 3.2 Topology of Network 14
 3.3 Topological Model of Loop-Sets 15
 3.4 Topological Model of Cut-Sets 16
 3.5 Orthogonality of Cut-Sets and Loop-Sets 18
 3.6 Linear Space Model of Network Topology 19
 3.7 Topological Transformation 20
 3.8 Topological Matrix T 22

4. **Algebraic Model of Network Currents** 25
 4.1 Matrix Model of Network Currents 25
 4.2 Linear Space Model of Network Currents 26
 4.3 Topological Transformation of Current Space 28
 4.4 Current Relations Using Topological Matrix T 29

5. **Algebraic Model of Network Voltages** 31
 5.1 Matrix Model of Network Voltages 31
 5.2 Linear Space Model of Network Voltages 33
5.3 Topological Transformation of Voltage Space 34
5.4 Voltage Relations Using Topological Matrix T 35

6 Algebraic Model of Current–Voltage Vectors 37
6.1 Orthogonality of Current and Voltage Vectors 37
6.2 Current–Voltage Vector .. 38
6.3 Linear Space Model of Current–Voltage Vectors 39
6.4 Current–Voltage Vectors’ Relations Using Matrix T 40
6.5 Comment .. 41

7 Kirchhoff’s Laws Using Matrix T 43
7.1 Basic b-Dimensional Formulation 43
7.2 Pseudo-Unit Formulation 45
7.3 Current–Voltage Formulation 46

8 Current–Voltage Functional Relations 47
8.1 Branch Parameters .. 47
8.2 Ohm’s Law of Network System—Algebraic Model 50
8.3 Linear Space Model of Current–Voltage State Vectors in Network System .. 52
8.4 Formulation of Ohm’s Law Using Matrix T 55
8.5 Matrices of System Admittance and System Impedance 57

9 General Comments to Part I 59
9.1 Part II Application Examples 60

Part II Application Examples

10 Applications of b-Dimensional Formulation of Kirchhoff’s Laws ... 63
10.1 Basic b-Dimensional Formulation 63
10.2 Pseudo-Unit Formulation .. 65

11 Network Solution Method Using Algebraic Network Model 69
11.1 Derivation of Method Using Matrix T 69
11.2 Classical Network Solution Methods 71

12 Method of Current and Voltage Sensitivity Analysis 73
12.1 Derivation of Method ... 73
12.2 Numerical Example ... 75

13 Method of Arbitrary Input Data 77
13.1 Description of Arbitrary Input Data 77
13.2 Derivation of Solution Equations 78
13.3 Solvability Analysis .. 80
13.4 Numerical Example ... 81
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Logical Optimization Method of Network System</td>
<td>87</td>
</tr>
<tr>
<td>14.1</td>
<td>Example of Network System Matrices</td>
<td>87</td>
</tr>
<tr>
<td>14.2</td>
<td>Logical Analysis of Network System Equations</td>
<td>89</td>
</tr>
<tr>
<td>14.3</td>
<td>Application Possibilities</td>
<td>94</td>
</tr>
<tr>
<td>15</td>
<td>Current-Based Method of Load Flow Solution</td>
<td>97</td>
</tr>
<tr>
<td>15.1</td>
<td>Current State-Oriented Topology of Network</td>
<td>97</td>
</tr>
<tr>
<td>15.2</td>
<td>Current State Vector and Current Flow Method</td>
<td>98</td>
</tr>
<tr>
<td>15.3</td>
<td>Current-Based Load Flow Method</td>
<td>101</td>
</tr>
<tr>
<td>15.4</td>
<td>Verification of Method</td>
<td>102</td>
</tr>
<tr>
<td>15.5</td>
<td>Conclusions</td>
<td>104</td>
</tr>
</tbody>
</table>
Mathematical Models of Electrical Network Systems
Theory and Applications - An Introduction
Klos, A.
2017, IX, 105 p. 15 illus., Hardcover
ISBN: 978-3-319-52176-3