Long-term digital preservation, the process of maintaining digital objects through time to ensure continued access, has become a crucial issue in recent years. The amount and the areas of digitized information are constantly increasing resulting in obsolescence of the software and hardware required to preserve digital information. Despite recognized need for preservation action, still more work is required to effectively address the issue in theory and practice.

The book is divided into two parts. Part I starts with discussion of the basic problems of long-term digital preservation. There are widely discussed and analyzed concepts and requirements for long-term digital preservation. Further, since metadata play important role in long-term digital preservation, processing of metadata in long-term digital archives is discussed. Long-term digital archives usually preserve all metadata transferred to them with corresponding digital objects and often use a subset of obtained metadata to manage archive assets. They also create preservation metadata, which describe processes and preservation actions applied to digital objects in the archives.

In Part II of the book, a framework based on the Digital Document Repository project CREDO is presented. Within the CREDO project, a demonstrative version of a digital repository enabling short- and long-term archiving of large volumes of digital resources has been designed and launched. The repository acts both as a secure file storage and as a digital archive providing metadata management and including the resources in archival packages. Reliability of information readouts is ensured by the repository through the data recording replication and monitoring mechanisms in the repository’s file system, as well as through the distributed nature of the system that enables storing copies of the resources in more than one location. Advanced management system supports scheduling of operations on the archival storage while respecting the low energy consumption requirements.

One of the system primary functions is the support for various currently available data carriers such as hard drives, solid-state drives, and tapes. However, the repository architecture is multi-tiered and it enables (together with the emergence of new technologies) replacement and continuous upgrades of the individual components.
This solution has been designed for institutions that store large digital resources for long periods of time, e.g., cultural institutions, mass media, state administration offices, and healthcare institutions. An evaluation of our framework is presented, which illustrates the viability of our approach in retaining accessibility, authenticity, and usability.

Warsaw, Poland
November 2016

Tomasz Traczyk
Włodzimierz Ogryczak
Piotr Pałka
Tomasz Śliwiński
Digital Preservation: Putting It to Work
Traczyk, T.; Ogryczak, W.; Pałka, P.; Śliwiński, T. (Eds.)
2017, XI, 158 p. 13 illus., Hardcover
ISBN: 978-3-319-51800-8