Contents

1 Introduction ... 1
 1.1 Overview ... 1
 1.2 Rationale ... 2
 1.2.1 Input–Output Analysis 2
 1.2.2 Consumption-Based Accounting 3
 1.2.3 Rapid Development in MRIO Databases, Coverage and Availability ... 4
 1.2.4 Understanding Difference and Uncertainty 5
 1.2.5 The Need for Further Research 6
 1.3 Aims and Research Themes .. 7
 1.4 Organisation of This Book .. 9
 References ... 12

2 Literature Review .. 15
 2.1 A Brief Overview of Input–Output Techniques 15
 2.1.1 Environmentally-Extended Input–Output Analysis 18
 2.1.2 Understanding Trade in Input–Output Analysis 19
 2.2 MRIO Construction ... 25
 2.2.1 Data Requirements to Extend IO to Consider Global Trade ... 26
 2.2.2 Preparation of Data for MRIO 27
 2.3 Data Sources and Construction of Current MRIO Systems 30
 2.3.1 GTAP MRIO .. 30
 2.3.2 WIOD MRIO .. 33
 2.3.3 Eora MRIO ... 35
 2.3.4 Comparing the Source Data, Structure and Construction of Eora, GTAP and WIOD 36
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4</td>
<td>The Future of MRIO Databases</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1</td>
<td>EXIOBASE</td>
<td>40</td>
</tr>
<tr>
<td>2.4.2</td>
<td>OECD ICIO</td>
<td>40</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Further Considerations</td>
<td>41</td>
</tr>
<tr>
<td>2.5</td>
<td>Differences in MRIO Outcomes</td>
<td>41</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Exploring the Effect of Data and Build</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Choices on MRIO Outcomes</td>
<td></td>
</tr>
<tr>
<td>2.5.2</td>
<td>Calculated Differences in CBA of Eora,</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>GTAP and WIOD</td>
<td></td>
</tr>
<tr>
<td>2.6</td>
<td>Policy Applications, Level of Detail and</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>Uncertainty</td>
<td></td>
</tr>
<tr>
<td>2.6.1</td>
<td>National CBAs</td>
<td>48</td>
</tr>
<tr>
<td>2.6.2</td>
<td>Identifying the Imported Component of</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>CBA</td>
<td></td>
</tr>
<tr>
<td>2.6.3</td>
<td>Impact by Source Nation and/or Product</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>Destination</td>
<td></td>
</tr>
<tr>
<td>2.6.4</td>
<td>Supply Chain Analysis</td>
<td>50</td>
</tr>
<tr>
<td>2.7</td>
<td>Matrix Difference Statistics</td>
<td>50</td>
</tr>
<tr>
<td>2.8</td>
<td>Structural Decomposition Analysis</td>
<td>51</td>
</tr>
<tr>
<td>2.8.1</td>
<td>Log-Mean Divisia Index</td>
<td>54</td>
</tr>
<tr>
<td>2.8.2</td>
<td>Shapely-Sun</td>
<td>54</td>
</tr>
<tr>
<td>2.8.3</td>
<td>Dietzenbacher and Los</td>
<td>54</td>
</tr>
<tr>
<td>2.8.4</td>
<td>Applications of Structural Decomposition</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>2.9</td>
<td>Structural Path Analysis</td>
<td>56</td>
</tr>
<tr>
<td>2.10</td>
<td>Structural Path Decomposition</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>3</td>
<td>Methods and Data</td>
<td>65</td>
</tr>
<tr>
<td>3.1</td>
<td>Input–Output Analysis</td>
<td>65</td>
</tr>
<tr>
<td>3.1.1</td>
<td>The Leontief Inverse</td>
<td>65</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Taylor’s Expansion</td>
<td>67</td>
</tr>
<tr>
<td>3.1.3</td>
<td>Environmentally Extended Input–Output</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>3.2</td>
<td>Matrix Difference Statistics</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Structural Decomposition Analysis</td>
<td>70</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Dietzenbacher and Los Method</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Shapley-Sun</td>
<td>73</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Logarithmic Mean Divisia Index Method</td>
<td>74</td>
</tr>
<tr>
<td>3.4</td>
<td>Structural Path Analysis</td>
<td>75</td>
</tr>
<tr>
<td>3.4.1</td>
<td>Structural Path Analysis with Supply and</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>Use Formats</td>
<td></td>
</tr>
<tr>
<td>3.4.2</td>
<td>Hybrid SUT and SIOT MRIO Tables</td>
<td>78</td>
</tr>
<tr>
<td>3.5</td>
<td>Structural Path Decomposition</td>
<td>80</td>
</tr>
<tr>
<td>3.6</td>
<td>Aggregating to Common Classifications</td>
<td>82</td>
</tr>
<tr>
<td>3.6.1</td>
<td>The Common Classification System</td>
<td>82</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Using Concordance Matrices</td>
<td>84</td>
</tr>
<tr>
<td>3.7</td>
<td>Conversion of Supply and Use Tables to</td>
<td>86</td>
</tr>
<tr>
<td></td>
<td>Symmetric IO Tables</td>
<td></td>
</tr>
</tbody>
</table>
4 Using Matrix Difference Statistics to Compare MRIO Databases

4.1 Overview ... 93
4.2 Creation of Concordance Matrices 94
4.3 A Comparison of Monetary Output Using Original
and Aggregated MRIO Databases 96
4.3.1 Country Level Results 97
4.4 A Comparison of Consumption-Based Emissions
Using Original and Aggregated MRIO Databases 99
4.4.1 Which Sectors Contribute to the Difference? 100
4.4.2 Country Level Consumption-Based Accounts 104
4.4.3 Country Level CBA Matrix Difference Results 104
4.5 Matrix Comparisons Between Aggregated Matrices 107
4.6 A Comparison of the Monetary Data in Different
MRIO Databases .. 107
4.6.1 Final Demand 108
4.6.2 Inter-industry Transactions 111
4.6.3 Domestic and Imports Sections of Z and y 112
4.6.4 Total Monetary Output 113
4.7 A Comparison of the Emissions Data in Different
MRIO Databases .. 115
4.7.1 Emissions by Industry 115
4.7.2 Emissions Intensity 118
4.7.3 Emissions Multipliers 118
4.7.4 Total Emissions 119
4.8 Which Database Pairing Is Most Similar? 119
4.9 Outcomes ... 122
4.9.1 Aggregated Systems as a Proxy for More
Detailed Versions .. 122
4.9.2 Difference Statistics to Aid Error Checking 122
4.9.3 Correlation and Distance 123
4.9.4 Relating Findings to the Source Data
and Build Technique 123
4.10 Summary ... 124
References .. 126
5 Using Decomposition Techniques to Determine Cause of Difference in MRIO Databases

5.1 Overview ... 127

5.2 Understanding the Effect of Different Source Data 128
 5.2.1 Structural Decomposition Equations Used. 128
 5.2.2 Consumption-Based Emissions Variation Between MRIO Databases. 130
 5.2.3 Interpreting the Results 132

5.3 Understanding the Effect of Different Build Methods 140
 5.3.1 Difference Equations the Effect of Domestic Versus Imports 140
 5.3.2 Interpreting the Results 141

5.4 Aggregated Databases Used for SPD 144

5.5 Structural Path Decomposition Equations Used 144

5.6 A Structural Path Analysis—US Case Study 146

5.7 Structural Path Decomposition 149

5.8 Global Results 152
 5.8.1 How Often Does a Particular Database Contain the Larger of the Two Paths? 152
 5.8.2 What Orders of Paths Make up the Top 100 Path Differences? 153
 5.8.3 What Is the Frequency Distribution by Size of Path Difference? 153
 5.8.4 Are There Particular Countries that Tend to Produce Large Path Differences? 155
 5.8.5 Are There Particular Sectors that Tend to Produce Large Path Differences? 155
 5.8.6 Are There Particular Elements Within the Taylor’s Equation that Tend to Be Responsible for Most of the Difference Between Paths? 156
 5.8.7 What Are the Characteristics of Paths Where the Emissions or the Monetary Data Contribute Most to the Difference? 157

5.9 Outcomes ... 159
 5.9.1 Building on the Findings of the Matrix Difference Statistics 159
 5.9.2 Domestic Value Chains 159
 5.9.3 Sources of Difference from the Emissions Vector 160
 5.9.4 Sources of Difference from the Monetary Data 160
 5.9.5 Using Aggregated Data 162
 5.9.6 SPD as a Tool for Identifying Difference 163

5.10 Summary ... 163

References. ... 165
6 Discussion .. 167
6.1 Summary of Findings 167
6.1.1 RT1: Calculating the Difference in the CO₂ CBA 167
6.1.2 RT2: Identifying the Differences in the Data Sources, Database Structures and Construction Techniques Used by Each Database 168
6.1.3 RT3: Investigating the Effect of the Choice of Sector Aggregation on the CO₂ CBA 169
6.1.4 RT4: Determining Whether the Results Produced by Each Database Are Statistically Similar to Each Other .. 170
6.1.5 RT5: Discovering Why the Different MRIO Databases Give Different Results 170
6.1.6 RT6: Exploring What These Findings Mean for the Future of MRIO Development and Its Use in a Policy Context 172
6.2 Future Development of MRIO Databases 172
6.2.1 Data Sources and Structure 172
6.2.2 Construction Techniques 175
6.2.3 Harmonisation or Specialisation 178
6.3 Future Use of MRIO Outcomes in Policy Analysis 179
6.3.1 Application at Different Scales 179
6.3.2 Choice of Model for Extended Analysis 180
References .. 182

7 Conclusion .. 185
7.1 The Overarching Aim 185
7.2 Contribution to the Knowledge Base 186
7.2.1 Presentation of the Difference in MRIO Database Philosophy and Outcome 186
7.2.2 Development of New Data to Allow Comparisons to be Made ... 186
7.2.3 Quantification of the Effect of Construction Choices on CBA Differences 186
7.2.4 Development of New Techniques for Calculating and Communicating Difference 187
7.3 Limitations of the Study 188
7.3.1 Limited Data Compared 188
7.3.2 Large Volume of Results 188
7.3.3 Findings Based on Aggregated Data 188
7.3.4 Dependency Effect in SPA and SPD 189
7.4 Future Research .. 189
7.4.1 Wider Scope ... 189
7.4.2 Explore Additional Comparison Techniques 190
Techniques for Evaluating the Differences in Multiregional Input-Output Databases
A Comparative Evaluation of CO2 Consumption-Based Accounts Calculated Using Eora, GTAP and WIOD
Owen, A.
2017, XXII, 217 p. 44 illus. in color., Hardcover
ISBN: 978-3-319-51555-7