Contents

1 Introduction ... 1
 1.1 Motivation, Challenges, and Objectives 1
 1.2 Vehicle Design Aspects 3
 1.2.1 Stages of Energy Conversion 4
 1.2.2 Real-World Driving Profile, Consumption,
 and Emissions 8
 1.3 Process Model, Control Strategy, and Optimization 10
 1.3.1 General Problem Statement 10
 1.3.2 Energy Management 12
 1.3.3 Numerical Solutions 16
 1.4 Bibliographical Notes 19
References ... 20

Part I Theory and Formulations

2 Introduction to Nonlinear Programming 27
 2.1 Introduction .. 27
 2.2 Unconstrained Nonlinear Optimization 30
 2.2.1 Necessary and Sufficient Conditions for Optimality. . 31
 2.2.2 Newton–Raphson Method 31
 2.2.3 Globalization of the Newton–Raphson Method 34
 2.2.4 Quasi-Newton Method. 37
 2.3 Constrained Nonlinear Optimization 39
 2.3.1 Necessary and Sufficient Conditions for Optimality. . 41
 2.3.2ProjectedHessian 44
 2.3.3 Sequential Quadratic Programming 46
 2.4 Sensitivity Analysis 54
 2.4.1 Sensitivity Analysis of the Objective Function
 and Constraints 58
 2.4.2 Linear Perturbations 63
2.4.3 Approximation of the Perturbed Solution 64
2.4.4 Approximation of the Confidence Region 66
2.5 Multi-Objective Optimization 67
2.5.1 Elitist Multi-Objective Evolutionary Algorithm 68
2.5.2 Remarks for MOGAs .. 72
2.6 Bibliographical Notes .. 73
References .. 74

3 Hybrid Systems and Hybrid Optimal Control 79
3.1 Introduction .. 79
3.2 System Definition .. 80
3.2.1 Continuous Systems 80
3.2.2 Hybrid Systems .. 83
3.2.3 Controlled Hybrid Systems and Switched Systems 86
3.2.4 Existence and Uniqueness of Admissible States and Controls .. 88
3.2.5 Control and State Constraints, Admissible Sets, and Admissible Function Spaces 91
3.2.6 Reformulation of Switched Systems 94
3.3 Optimal Control Problem Formulations 96
3.3.1 Functionals ... 96
3.3.2 Boundary Conditions 97
3.3.3 Continuous Optimal Control Problem 98
3.3.4 Hybrid Optimal Control Problem 100
3.3.5 Switched Optimal Control Problem 101
3.3.6 Binary Switched Optimal Control Problem 102
3.3.7 Transformations of Optimal Control Problems 103
3.4 Bibliographical Notes ... 110
References .. 112

4 The Minimum Principle and Hamilton–Jacobi–Bellman Equation .. 117
4.1 Introduction .. 117
4.1.1 The Calculus of Variations 117
4.1.2 Deriving First-Order Necessary Conditions for an Extremum of an Optimal Control Problem 120
4.2 Minimum Principle ... 125
4.2.1 Necessary Conditions for Optimal Control Problems with Control Restraints 128
4.2.2 Necessary Conditions for Optimal Control Problems with State Constraints 131
4.2.3 Necessary Conditions for Optimal Control Problems with Affine Controls 137
4.3 Hamilton–Jacobi–Bellman Equation 140
Part II Methods for Optimal Control

5 Discretization and Integration Schemes for Hybrid Optimal Control Problems

5.1 Introduction .. 167
5.2 Discretization of the Initial Value Problem 168
5.3 Runge–Kutta Integration Scheme 169
5.4 Consistence Order of Runge–Kutta Methods 174
5.5 Stability ... 183
5.6 Some Lower–Order Runge–Kutta Integration Schemes 185
 5.6.1 Explicit Runge–Kutta Schemes 186
 5.6.2 Implicit Runge–Kutta Schemes 189
5.7 Remarks for Integration Schemes for Switched System with Discontinuities 194
5.8 Consequences of the Discretization to Optimal Control Problems ... 195
5.9 Bibliographical Notes 196
References ... 197

6 Dynamic Programming 199

6.1 Introduction .. 199
6.2 Optimal Control for Continuous Systems 200
6.3 Optimal Control of Hybrid Systems 206
6.4 Discussion ... 210
6.5 Bibliography .. 212
References ... 213

7 Indirect Methods for Optimal Control

7.1 Introduction .. 215
7.2 Optimal Control for Continuous Systems 216
 7.2.1 Indirect Shooting Method 216
 7.2.2 Indirect Multiple Shooting Method 221
7.3 Optimal Control for Hybrid Systems 225
7.4 Discussion ... 228
8 Direct Methods for Optimal Control

8.1 Introduction .. 233
8.2 Optimal Control for Continuous Systems 239
 8.2.1 Direct Shooting 240
 8.2.2 Direct Collocation 245
 8.2.3 Comparison of Direct Shooting and Direct
 Collocation 247
 8.2.4 Recovering the Costates from a Direct Shooting
 and Direct Collocation 247
8.3 Optimal Control for Switched Systems 249
 8.3.1 Embedded Optimal Control Problem 250
 8.3.2 Two-Stage Algorithm 253
 8.3.3 Switching Time Optimization with Parameterized
 Switching Intervals 257
8.4 Numerical Methods for Obtaining Binary Feasible Control
 Functions 261
8.5 Discussion ... 266
8.6 Bibliography .. 267
References ... 270

Part III Numerical Implementations

9 Practical Implementation Aspects of Large-Scale Optimal
 Control Solvers .. 277
 9.1 Sparse Linear Algebra 277
 9.1.1 Sparse Matrix Formats 277
 9.1.2 Numerical Solution of Large-Scale Linear Systems .. 278
 9.1.3 Checking the Positive Definiteness of Large-Scale
 Matrices 282
 9.2 Calculating Derivatives 283
 9.2.1 Computational Graphs 283
 9.2.2 Sparsity Pattern Determination 284
 9.2.3 Compressed Derivative Calculation 288
 9.2.4 Finite Differences 291
 9.3 Sparse Quasi-Newton Updates 295
 9.3.1 Quasi-Newton Update for Partially Separable
 Function 295
 9.3.2 Simple Quasi-Newton Update for Chordal Sparsity
 Structures 296
 9.3.3 Quasi-Newton Update for Chordal
 Sparsity Structures 298
9.3.4 Modifications of the Quasi-Newton Update
9.3.5 Quasi-Newton Updates for Discretized Optimal Control Problems
9.4 Bibliographical Notes
References

Part IV Modeling of Hybrid Vehicles for Control

10 Modeling Hybrid Vehicles as Switched Systems
10.1 Introduction
10.2 Vehicle Dynamics
10.3 Mechatronic Systems
10.3.1 Internal Combustion Engine
10.3.2 Electric Machine
10.3.3 Gearbox
10.3.4 Clutch
10.3.5 Battery
10.4 Hybrid Vehicle Configurations
10.4.1 Parallel Hybrids
10.4.2 Power-Split Hybrids
10.4.3 Serial Hybrids
10.4.4 Combined Hybrids
10.4.5 Plug-In Hybrids
10.4.6 Battery Electric Vehicles
10.5 Hybrid Vehicle Models
10.5.1 Quasi-static Model for Parallel Hybrids
10.5.2 Thermodynamic Model for Parallel Hybrids Using Spark Ignition Engines
10.5.3 Quasi-static Model for Power-Split Hybrids
10.5.4 Extended Quasi-static Model for Parallel Hybrids
10.6 Drive Cycles
10.7 Static Function Representation
10.8 Switching Costs
10.9 Bibliographical Notes
References

Part V Applications

11 Advanced Vehicle Calibration
11.1 Introduction
11.2 Offline Solution of Switched Optimal Control Problems for Known Driving Profiles
11.3 Analytical Calibration for Rule-Based Energy Managements ... 412
11.3.1 Constant Costate Assumption 414
11.3.2 Influence of Switching Costs 416
11.3.3 Lookup Table Calculation 417
11.4 Rule-Based Strategies for Choosing the Costate ... 421
11.4.1 Rule-Based Selection Using Costate Maps 422
11.4.2 Costate for Optimal CO₂ Emissions 423
11.5 Implementation Issues 424
11.6 Bibliography .. 426
References ... 427

12 Predictive Real-Time Energy Management 429
12.1 Introduction .. 429
12.2 Real-World Benchmark-Cycles 431
12.3 Intelligent Traffic System 433
12.3.1 Time-Based Driver Model 434
12.3.2 Spatial-Based Driver Model 436
12.3.3 Estimation of Stop Events 439
12.4 Predictive Energy Management for Battery Electric Vehicles 440
12.4.1 Vehicle Model 442
12.4.2 Dynamic Programming for the Maximal Speed Limit 443
12.4.3 Instantaneous Speed Limit Corrections 445
12.4.4 Experimental Results 446
12.5 Predictive Energy Management for Hybrid Vehicles 447
12.5.1 Event-Triggered Predictive Energy Management 450
12.5.2 Predictive Energy Management with Long Prediction Horizon 460
12.6 Bibliographical Notes 474
References ... 478

13 Optimal Design of Hybrid Powertrain Configurations 481
13.1 Introduction .. 481
13.2 Process Description 482
13.2.1 Drivability Performance Index 482
13.2.2 Design Parameters 483
13.2.3 Powertrain Dynamics 484
13.3 Multi-objective Powertrain Design 486
13.3.1 Master Problem 488
13.3.2 Map Scaling for Powertrain Components 488
13.3.3 Batched Optimal Control Subproblems 491
13.4 P2-Hybrid Design Study 498
13.5 Post Optimal Parametric Sensitivity Analysis 507
Hybrid Systems, Optimal Control and Hybrid Vehicles
Theory, Methods and Applications
Böhme, Th.J.; Frank, B.
2017, XXXIII, 530 p. 143 illus., 113 illus. in color.,
Hardcover
ISBN: 978-3-319-51315-7